
Sukkur Institute of Business Administration University

Department of Electrical Engineering.

Digital Logic Design

Course Handouts

Instructor

Dr. Muhammad Asim Ali

Fall 2024

Contents

1 Introduction 2

1.1 Motivation . 2

1.2 Digital vs. Analog Signals 4

1.3 Mathematical Model of Logical System 4

1.4 Examples . 7

2 Number Systems 10

2.1 Types of Numbers . 10

2.2 Numbers Conversion . 13

2.3 Octal and Hexa-Decimal Numbers 14

2.3.1 Decimal to Octal Conversion 14

2.3.2 Decimal to Hexadecimal Conversion 15

2.4 Arithmetic Operations . 16

2.5 Complement Codes . 16

2.5.1 Signed Numbers . 17

2.6 Binary Codes . 18

2.7 Parity Check . 23

2.8 ASCII Codes . 25

2.9 Number Formats . 26

3 Boolean Algebra & Logic Gates 29

3.1 Logic Gates . 30

3.2 Axioms of Boolean Algebra 33

3.2.1 DeMorgan’s Theorem . 36

3.2.2 Simplification Using Boolean Algebra 37

2

3.3 Universal Gates . 39

3.3.1 The NAND Gate as Universal Logic Element 39

3.3.2 The NOR Gate as Universal Logic Element 39

3.4 Canonical and Standard Forms 40

3.4.1 Sum of Products Notation 40

3.4.2 Product of Sums Notation 42

3.5 Simplification Techniques 42

3.6 Timing, Power & other Considerations 46

3.6.1 Logic IC Family 74xxabc 46

4 Combinatorial Functions 52

4.1 Full / Half Adders . 52

4.2 Parallel Binary Adders . 54

4.3 Ripple Carry and Look-Ahead Carry Adders 55

4.4 Comparators . 59

4.5 Decoder / Encoder . 60

4.5.1 Encoder . 61

4.6 Multiplexers and Demultiplexers 62

4.7 Parity Generator / Checkers 65

5 Behavioural Model of Digital Circuits 67

5.1 Behavioural Modelling of Gates 67

5.2 Combinational Logic with VHDL 71

6 Register / Counters & Memory 77

6.1 Latches . 79

6.1.1 Set-Reset Latches . 79

6.1.2 Gated Set-Reset Latches . 81

6.1.3 DATA Latches . 81

6.2 Flip-Flops . 82

6.2.1 D Flip-Flop . 83

6.2.2 The JK Flip-Flop . 83

1

6.2.3 The T Flip-Flop . 84

6.2.4 Master-Slave Flip-FLop . 86

6.3 Flip-Flop Applications . 87

6.3.1 Parallel Data Storage . 89

6.3.2 Frequency Division . 90

6.3.3 Counting . 91

7 Registers and Counters 92

7.1 Shift Register Operations 92

7.2 Types of Shift Register Data I/Os 95

7.2.1 Serial In / Serial Out Shift Registers 95

7.2.2 Serial In / Parallel Out Shift Registers 95

7.2.3 Parallel In / Serial Out Shift Registers 96

7.2.4 Parallel In / Parallel Out Shift Registers 96

7.3 Bi-Directional Shift Registers 96

7.4 Shift Registers Counters . 97

7.5 Shift Register Applications 99

7.6 Finite State Machines . 101

7.7 Asynchronous Counters . 102

7.8 Synchronous Counters . 103

7.9 Up/Down Synchronous Counters 105

Chapter 1
Introduction

Outline

The objective of this chapter / course is to motivate you to appreciate the

importance of digital logic to design digital systems using basic elements of

logic and understand the design of digital systems through elementary logic

components.

A⃝ Motivation D⃝ Advantages of Digital / Analog systems

B⃝ Digital & Analog Systems E⃝ Examples of Digital Systems.

C⃝ Modelling of Digital System

1.1 Motivation

Digital systems (anything useful you can ever imagine) ranging from industry, re-

search and development, Information Technology would not have been possible with-

out digital systems. The most important aspect of Digital systems is that they are

2

CHAPTER 1. INTRODUCTION 3

highly reconfigurable and can process complex information. They include systems

such as Computer and Mobile Phones and other networking devices, application

specification integrated circuits for medical, Defence, Instrumentation & Measure-

ment, Robotics, Industrial Automation and Space applications just to name a few.

This elementary course is your journey to the fundamentals of Digital Circuit Design

using the constructs of Digital Logic.

CHAPTER 1. INTRODUCTION 4

1.2 Digital vs. Analog Signals

Natural forces and signals are all analogue (continuous) signals which may be mea-

sured as a continuous signal. On the other hand our digital (non continuous binary)

signals which can be processed and communicated more effectively. This leads us

to translate analog signals into digital form.

IN OUT

v(t)

t

v[n]

n

Figure 1.1: Analog to Digital Conversion via sampling process.

Characteristic of digital systems is its manipulation of discrete elements i.e. im-

pulses, decimal digits, letters, alphabets arithmetic operations or any other mean-

ingful symbols.

1.3 Mathematical Model of Logical System

Many physical systems can be described as mathematical functions whose solutions

completely describe the behaviour of device.

A digital device is an interconnect of simpler digital devices (such as transistors).

A highly complex system such as microprocessor may have billions of transistors

packed in space as small as 1 cm2.

CHAPTER 1. INTRODUCTION 5

4−bit adder

4−bit adder

4−bit adder

0

0

0

A B
S

cout

cout

cout

a0a3 a2 a1

a0a3 a2 a1

a0a3 a2 a1

cin

cin

a0a1a2a3

cin

C
in

C
o
u
t

c5 c4 c3 c2c6 c1 c0c7

b3

b2

b1

b0

Figure 1.2: (a) Circuit of One-bit Full-adder (b) Circuit of 4-bit Multiplier with uses

several FA’s.

Fig. 1.2 illustrates that sophistication of device is directly proportional to the num-

ber of transistors. To understand/ design the behaviour of a digital devices, it is

important the have the knowledge of the basic building blocks of digital system and

to understand their behaviour.

Over the past 50 years design tools and manufacturing technology has become a

well established industrial standard.

Cost

(complexity)

(speed)
Performance

(energy dissipation)

Power

Figure 1.3: Key factors affecting system design.

CHAPTER 1. INTRODUCTION 6

Why digital?

Property Digital Analog

Precision Generally unlimited Generally limited

cost, complexity
increase in

performance

and precision
drastic increase in

cost

Aging Without problems Problematic

Production costs Low Higher

Linear-phase exactly realizable
approximate

realization

frequency response

Complex Algorithms realizable strong limitations

CHAPTER 1. INTRODUCTION 7

1.4 Examples

The application of digital systems are diverse. It is not an exaggeration to say that

enhancement in daily life would have been impossible without application of digital

circuits and systems.

A handful of applications and examples are illustrated in the picture below.

Figure 1.4: a. Calculator b. Microprocessor c. HDMI (Encoder / Decoder) d. DES

(Encryptor / Decryptor)

CHAPTER 1. INTRODUCTION 8

71 72 74 76 79 82 85 89 93 97 99 00 08 12 13 21 22 23 24

104

105

106

107

108

109

1010

1011

1012

i4004
i8008i8080

i8085

i8088

i286
i386

i486
P-I

P-IIP-III

P-IV

i7
i7

i7(3-gen)

i9(11)

A7

A8x

Nvidia
M1

M2
M3

AMD
Nvidia

year

#
of

Tr
an

sis
to

rs

Moore’s Law

In 1965, Gordon Moore co-founder of the Intel corporation predicted that “The

number of transistors and resistors on a single chip will double every 18 months”,

regarding the development of semiconductor gate technology. When Gordon Moore

made his famous comment way back in 1965 there were approximately only 60 in-

dividual transistor gates on a single silicon chip or die.

The worlds first microprocessor developed in 1971 Intel 4004 had a 4-bit data bus

and contained about 2,300 transistors on a single chip, operating at about 600kHz.

Today, Apple Corporation have placed a staggering 116 Billion individual transistor

gates onto its new M3 64-bit microprocessor chip operating at nearly 4GHz, and the

on-chip transistor count is still rising, as newer faster microprocessors and micro-

controllers are developed.

CHAPTER 1. INTRODUCTION 9

Chapter 2
Number Systems

Outline

The objective of this chapter is to take a quick review of the elementary

concepts essential for this module. This chapter highlights the all important

concepts of sampling and quantization. The fundamental concepts covered

in this chapter are

A⃝ Types of Numbers E⃝ Binary Codes

B⃝ Numbers Conversion F⃝ Cyclic Parity Check

C⃝ Octal and Hexa-Decimal Numbers G⃝ Gray Codes

D⃝ Complement Codes H⃝ ASCII Codes

2.1 Types of Numbers

A decimal number such as 7392 represents a quantity equal to 7 thousands plus 3

hundreds, plus 9 tens and 2 units. The thousands, hundreds e.t.c. are powers of 10

10

CHAPTER 2. NUMBER SYSTEMS 11

implied by the position of coefficients. To be more exact, 7392 should be written as

7 × 103 + 3 × 102 + 9 × 101 + 2 × 100

However the convention is to write only the coefficients and from their position

deduce the necessary power of 10. In general, a number with decimal point is

represented by a series of coefficients as follows:

a5a4a3a2a1a0a−1a−2a−3

For ai coefficients are one of the ten digitals (0, 1, · · · , 9) and subscript i gives the

place value hence the power of 10 by when the coefficients must be multiplied.

a5·105 + a4·104 + a3·103 + a2·102 + a1·101 + a0·100 + a−1·10−1 + a−2·10−2 + a−3·10−3

The decimal number system is said to be of base / of radix ‘10’. The binary system

is different number system as it has only two possible values 0 and 1; Each coefficient

ai is multiplied by 2i. For example, the decimal equivalent of the number 110010.11

is 50.75, as illustrated below:

1 × 25 + 1 × 24 + 1 × 21 + 1 × 2−1 + 1 × 2−2

In general, a number expressed in base-r system has coefficients multiplied by powers

of r:

an · rn + an−1 · rn−1 + · · · + a2r
2 + a1r

1 + a0 +a−1 · r−1 + a−2r
−2 + · · · + a−mr−m

in compact notation this can be rewritten as:

x =
n∑

i:−m

air
i

The coefficients ai range in the values from 0 and r − 1. To distinguish between

numbers of different bases, the bases is written as subscript. Specially so when

dealing with number of different bases.

CHAPTER 2. NUMBER SYSTEMS 12

Write the general for-

mula here.

Note!

Conversion of Number Basis

Dec. to Dec. 392.2510 → 3×102+9×101+2×100+2×10−1+5×10−2 392.2510

Bin. to Dec. 1010.0112 → 23+21+2−1+2−2+2−3 10.37510

Oct. to Dec. 630.48 → 6×82+3×8+4×8−1 408.510

Hex. to Dec. B65F16 → 11×163+6×162+5×161+15 4668710

Table 2.1: Numbers with Different Bases.

Decimal Binary Octal Hexadecimal

00 0000 00 0

01 0001 01 1

02 0010 02 2

03 0011 03 3

04 0100 04 4

05 0101 05 5

06 0110 06 6

07 0111 07 7

08 1000 10 8

09 1001 11 9

10 1010 12 A

11 1011 13 B

12 1100 14 C

13 1101 15 D

14 1110 16 E

15 1111 17 F

CHAPTER 2. NUMBER SYSTEMS 13

2.2 Numbers Conversion

Hexa-decimal, Decimal and Octal number can be converted to binary format through

the process of long division, Examples of the process are illustrated below:

Decimal to Binary Conversion

2 12 → 0

2 6 → 0

2 3 → 1

1 → 1

1×23+1×22+0×21+0×20=12

2 13 → 1

2 6 → 0

2 3 → 1

1 → 1

1×23+1×22+0×21+1×20=13

Some more Example

2 127 → 1

2 63 → 1

2 31 → 1

2 15 → 1

2 7 → 1

2 3 → 1

1 → 1

27+26+25+24 + 23+22+21+20=127

2 224 → 0

2 112 → 0

2 56 → 0

2 28 → 0

2 14 → 0

2 7 → 1

2 3 → 1

1 → 1

27+26+25=224

CHAPTER 2. NUMBER SYSTEMS 14

2.3 Octal and Hexa-Decimal Numbers

Octal and Hexa-decimal numbers are important from computer implementation

point of view; Hexa decimal numbers more so because two hexa-decimal numbers

can fit in the basic data structure called Byte. Below we illustrate some examples of

number conversion between binary, octal and hexadecimal numbers:

Number Conversion Examples

Convert the following binary Numbers into Octal and Hexadecimal Numbers

(a) 1101012 (b) 1011110012 (c) 110100001002 (d) 110100001002

Binary Octal Hexadecimal

1101012 110
6

101
5

11
3

0101
5

1011110012 101
5

111
7

001
1

1
1

0111
7

1001
9

1001100110102 100
4

110
6

011
3

010
2

1001
9

1001
9

1010
A

110100001002 011
3

010
2

000
0

100
4

0110
6

1000
8

0100
4

2.3.1 Decimal to Octal Conversion

Decimal to octal conversion is also performed through long division; the decimal

number is repeatedly divided by 8 until the integer part of the remainder is greater

than 0. The process is illustrated through examples:

8 359 44.875 −→ 0.875 × 8 = 7

8 44 5.5 −→ 0.5 × 8 = 4

8 0
↑
.625 0 −→ 0.625 × 8 = 5

0 5
MSB

4 7
LSB

5×82+4×81+7×80=35910

8 1276 159.5 −→ 0.5 × 8 = 4

8 159 19.875 −→ 0.875 × 8 = 7

8 19 2.375 −→ 0.375 × 8 = 3

8 2 0.25 −→ 0.25 × 8 = 2

0 2
MSB

3 7 4
LSB

2×83+3×82+7×81+4×80=127610

Conversion from Dec-

imals to all other for-

mats requires long divi-

sion.

Note!

CHAPTER 2. NUMBER SYSTEMS 15

2.3.2 Decimal to Hexadecimal Conversion

Decimal numbers can be converted to Hexadecimal numbers through the process of

long division as discussed above. Some more examples to illustrate the process.

16 3018 188.625 −→ 0.625 × 16 = 10

16 188 11.75 −→ 0.75 × 16 = 12

16 11 0
↑
.6875 −→ 0.6875 × 16 = 11

0 B
MSB

C A
LSB

10×162+12×161+10×160=301810

16 2576 161 −→ 0 × 16 = 0

16 161 10.0625 −→ 0.0625 × 16 = 1

16 10 0.625 −→ 0.6255 × 16 = 10

0 A
MSB

1 0
LSB

10×162+1×161+0×160=257610
CEBFA98 Want to

discuss how a byte con-

stitutes of number.

Note!

Summary

Conversion of numbers from one format to another

Binary Octal Decimal HexaDecimal

Binary − pair 3 bits
∑

i

ai2i pair 4 bit

Octal convert each dig. −
∑

i

ai8i regroup

Decimal Long div. Long div. − Long div.

HexaDecimal convert each dig. regroup
∑

i

ai16i −

CHAPTER 2. NUMBER SYSTEMS 16

Plz talk about compo-

sition of byte.

Note!

2.4 Arithmetic Operations

Arithmetic operations with numbers in base r follow the same rules as for decimal

numbers. When other than the familiar base 10 is used, be careful to use only the r

allowable digits. Examples of addition, subtraction and multiplication of two binary

numbers are as follows:

augend: 1 0 1 1 0 1

addend: + 1 0 0 1 1 1

sum: 1 0 1 0 1 0 0

minuend: 1 0 1 1 0 1

subtrahend: - 1 0 0 1 1 1

difference: 0 0 0 1 1 0

multiplicand: 1 0 1 1

multiplier: × 1 0 1

1 0 1 1

0 0 0 0

+ 1 0 1 1

product: 1 1 0 1 1 1

2.5 Complement Codes

Binary numbers are positive numbers, to perform arithmetic operations such as

subtraction, we need to process the numbers so that the system stays intact. The

first way to represent positive and negative numbers is to use the most significant bit

of a binary number as sign-bit; while using the rest of bits to represent magnitude.

CHAPTER 2. NUMBER SYSTEMS 17

However, Complements are used in digital computers for simplifying the subtraction

operation and for logical manipulation. There are two types of complements for each

base r- system: the radix complement and the diminished radix complement. When

the value of the base r is substituted in the name, the two types are referred to as the

2‘s complement and 1‘s complement for binary numbers, and the 10‘s complement

and 9‘s complement for decimal numbers.

The ones and twos complement of a binary number are important because they per-

mit representation of negative numbers. The method of 2’s complement arithmetic

is commonly used in computers for handling negative numbers.

The 1’s complement of a binary number is found by changing all 1s to 0s and 0s to

1s as illustrated below

8-bit Binary Number 10110010

↓↓↓↓↓↓↓↓

1s complement 01001101

The 2’s complement of a binary number is obtained by adding 1 to the LSB of the

1s complement.

2scomplement = (1s complement) + 1

2.5.1 Signed Numbers

A digital system should be able to handle both positive and negative numbers. A

signed binary number consists of both sign and magnitude information. The sign

indicates whether a number is positive or negative and the magnitude is the value

of the number. There are forms in which signed integer (whole) numbers can be

represented in binary, sign-magnitude, 1s and 2s complement.

With sign-magnitude representation left most bit is the sign-bit, which tell whether

a number is positive or negative.

25 00011001

-25 10011001

CHAPTER 2. NUMBER SYSTEMS 18

Subtraction with Complements

The size of a number which can be represented by an n−bit digit is 2n. For 2‘s

complement signed numbers, the range of values for an n−bit numbers is

Range = −(2n−1) to + (2n−1 − 1)
Two’s complement

code provides the

widest number rep-

resentation.

Note!

The comparison between 8-bit binary numbers in 1‘s and 2‘s complement notation

is illustrated in Fig. 2.1.

1111 1111 (−127)

1111 1110 (−126)

(−1)1000 0001

(−0)1000 0000

0001

0000

(−126)

(−127)

0111

0111 1110

1111

1111 1111

1111 1110 (−1)

(−0)

0000 0001

0000 0000

1000

1000

0001

0000

0111

0111 1110

1111

1111 1111

1111 1110

0000 0001

(+0)0000 0000

(+1)

(−128)

(−127)

1000

1000

(−2)

(−1)

Sign−Magnitude

1’s complement

+1

0111 1111

0111 1110

(+127)

(+126)

0000 0001

0000 0000

(+1)

(+0)

(+127)

(+126)

(+1)

(+0)

(+126)

(+127)

2’s complement

Figure 2.1: Geographical representation of 1‘s and 2‘s complement codes.

2.6 Binary Codes

Binary Coded Decimals

The Humans prefer decimal numbers; however computers and other electronic de-

vice operate with binary codes, Binary coded decimals is a suitable arrangement

CHAPTER 2. NUMBER SYSTEMS 19

Table 2.2: Table outlining different binary number formatting techniques.

number sign magn 2’s compl. offset bin. 1’s compl.

+127 01111111 01111111 11111111 01111111

+126 01111110 01111110 11111110 01111110

+125 01111101 01111101 11111101 01111101
... · · · · · · · · · ...
... · · · · · · · · · · · ·

+2 00000010 00000010 10000010 00000010

+1 00000001 00000001 10000001 00000001

+0 00000000 00000000 10000000 00000000

-0 10000000 00000000 10000000 11111111

−1 10000001 11111111 01111111 11111110

−2 10000010 11111110 01111110 11111101

−3 10000011 11111101 01111101 11111100
... · · · · · · · · · ...
... · · · · · · · · · · · ·

−126 11111110 10000010 00000010 10000001

−127 11111111 10000001 00000001 10000000

−128 10000000 00000000

CHAPTER 2. NUMBER SYSTEMS 20

which allows for convenience of user interface as well as programmability. In BCD

codes each number is represented as set of 4 binary digits. With 4 digits 24 = 16

digits are possible however on 10 of them are valid i.e. BCD codes run from 00002

(010) to 10012 (910); numbers from 10102 to 11112 are classed as forbidden numbers.

The main advantage of BCD codes is that it allows for efficient conversion between

decimal and binary forms, however it is also wasteful as several states are not used.

Table 2.3: Different Numbering Formats.

Decimal BCD 8421 2421 84-2-1 Excess-3 5211

00 0000 0000 0000 0000 0011 0000

01 0001 0001 0001 0111 0100 0001

02 0010 0010 0010 0110 0101 0011

03 0011 0011 0011 0101 0110 0101

04 0100 0100 0100 0100 0111 0111

05 0101 0101 1011 1011 1000 1000

06 0110 0110 1100 1010 1001 1010

07 0111 0111 1101 1001 1010 1100

08 1000 1000 1110 1000 1011 1110

09 1001 1001 1111 1111 1100 1111

BCD has special importance in digital displays.

CHAPTER 2. NUMBER SYSTEMS 21

Example: Addition of BCD formatted numbers
(a) 0011+0100 (b) 00100011+00010101

(c) 10000110+00010011 (d) 010001010000+010000010111

0011 3

+0100 +4

0111 7

0010 0011 23

+0001 0101 +15

0011 1000 38

1000 0110 86

+0001 0011 +13

1001 1001 99

0100 0101 0000 450

+0100 0001 0111 +417

1000 0110 0111 867

Example: 35710 in BCD would be represented as 0011 0101 0111BCD. Key lim-

itations also include that addition / subtraction of BCD number is not straight

forward, BCD number should not be mixed with binary numbers, addition coding

is required to format the numbers, Each byte contains two BCD digits.

84-2-1 Codes

As illustrated in Table 2.3 84-2-1 Codes are just another variant of number repre-

sentation.

Gray Codes

In Gray code two consecutive codes differ by only one bit. Gray codes have very
special place in digital electronics.

CHAPTER 2. NUMBER SYSTEMS 22

Table 2.4: Gray Coded Binary Numbers.

Decimal Binary Gray Code

00 0000 0000

01 0001 0001

02 0010 0011

03 0011 0010

04 0100 0110

05 0101 0111

06 0110 0101

07 0111 0100

08 1000 1100

09 1001 1101

10 1010 1111

11 1011 1110

12 1100 1010

13 1101 1011

14 1110 1001

15 1111 1000

Excess-3 Codes

Excess-3 code is an example of it and it is an important 4 bit code. The excess – 3

code of a decimal number is achieved by adding the number 3 to the 8421 code.

CHAPTER 2. NUMBER SYSTEMS 23

Some important classifications

Weighted / Non-Weighted Codes: Some of the codes will not follow the

weights of the sequence binary numbers these are called as non-weighted

codes. ASCII code and Grey code are some of the examples where they

are coded for some special purpose applications and they do not follow the

weighted binary number calculations.

Sequential Codes: Sequential codes are the codes in which 2 subsequent

numbers in binary representation differ by only one digit. The 8421 and

Excess-3 codes are examples of sequential codes. 2421 and 5211 codes do

not come under sequential codes.

Reflective Code:It can be observed that in the 2421 and 5211 codes, the

code for decimal 9 is the complement of the code for decimal 0, the code for

decimal 8 is the complement of the code for decimal 1, the code for decimal

7 is the complement of the code for decimal 2, the code for decimal 6 is

the complement of the code for decimal 3, the code for decimal 5 is the

complement of the code for decimal 4. These codes are called as Reflective

Codes.

2.7 Parity Check

The Parity Check is widely used code used for detecting one-and two-bit transmis-

sion error in digital communication.

CHAPTER 2. NUMBER SYSTEMS 24

Table 2.5: Gray Coded Binary Numbers.

Even Parity Odd Parity

P BCD P BCD

0 0000 1 0000

1 0001 0 0001

1 0010 1 0010

0 0011 0 0011

1 0100 0 0100

0 0101 1 0101

0 0110 1 0110

1 0111 0 0111

1 1000 0 1000

0 1001 1 1001

The parity bits can be attached to the code at either the beginning or at the end,

depending on the system design. Notice that the total number of 1s, including the

parity bit, is always even for even parity and odd for odd parity.

CHAPTER 2. NUMBER SYSTEMS 25

2.8 ASCII Codes

Table 2.6: Table of ASCII Codes.

Decimal Hex Value Decimal Hex Value Decimal Hex Value Decimal Hex Value

000 000 NUL 032 020 SP 065 041 A 097 061 a

001 001 SOH 033 021 ! 066 042 B 098 062 b

002 002 STX 034 022 " 067 043 C 099 063 c

003 003 ETX 035 023 # 068 044 D 100 064 d

004 004 EOT 036 024 $ 069 045 E 101 065 e

005 005 ENQ 037 025 % 070 046 F 102 066 f

006 006 ACK 038 026 & 071 047 G 103 067 g

007 007 BEL 039 027 ’ 072 048 H 104 068 h

008 008 BS 040 028 (073 049 I 105 069 i

009 009 HT 041 029) 074 04A J 106 06A j

010 00A LF 042 02A * 075 04B K 107 06B k

011 00B VT 043 02B + 076 04C L 108 06C l

012 00C FF 044 02C , 077 04D M 109 06D m

013 00D CR 045 02D - 078 04E N 110 06E n

014 00E SO 046 02E . 079 04F O 111 06F o

015 00F SI 047 02F / 080 050 P 112 070 p

016 010 DLE 048 030 0 081 051 Q 113 071 q

017 011 DC1 049 031 1 082 052 R 114 072 r

018 012 DC2 050 032 2 083 053 S 115 073 s

019 013 DC3 051 033 3 084 054 T 116 074 t

020 014 DC4 052 034 4 085 055 U 117 075 u

021 015 NAK 053 035 5 086 056 V 118 076 v

022 016 SYN 054 036 6 087 057 W 119 077 w

023 017 ETB 055 037 7 088 058 X 120 078 x

024 018 CAN 056 038 8 089 059 Y 121 079 y

025 019 EM 057 039 9 090 05A Z 122 07A z

026 01A SUB 059 03B ; 091 05B [123 07B {

027 01B ESC 060 03C < 092 05C \ 124 07C |

028 01C FS 061 03D = 093 05D] 125 07D }

029 01D GS 062 03E > 094 05E ˆ 126 07E ∼

030 01E RS 063 03F ? 095 05F _ 127 07F DEL

031 01F US 064 040 @ 096 060 ‘

CHAPTER 2. NUMBER SYSTEMS 26

2.9 Number Formats

The size of number which can be represented by a data structure primarily depends

on its format. The numbers can be categorized into two formats namely fixed-point

and floating-point numbers.

Fraction

Fraction

Sign Sign

Digits

Numerator

Numerator

Denominator

Denominator

Exponent

Sign

Sign

Sign

Sign

Mantissa

Integer

Integer

Integer

Integer

Size

Figure 2.2: Geographical representation of Fixed and Floating point number

formats .

Fixed Point Numbers

Fixed point numbers as apparent from their name have a fixed size of bits, usually

the most significant bit is the sign bit while the remaining bits carry the information

about the magnitude. Commonly used fixed-point variables include byte (1 byte /

8 bits), Integer (2-4 bytes/ 16-32 bits) and long type variables have (8 bytes / 64

bits).

CHAPTER 2. NUMBER SYSTEMS 27

Floating Point Numbers

To represent a very large integer (whole) number, many many bits are required.

There is also a problem when number has both integer and fractional parts such

as 23.5618 need to be represented. The floating-point number system, based on

scientific notation, is capable of representing very large and very small numbers

without an increase in number of bits and is also capable of representing numbers

that have both integer and fractional components.

A Floating-point number consists of two parts and sign.. The mantissa is the part

of the floating-point number that represents the magnitude of the number and is

between 0 and 1. The exponent is the part of a floating-point number that represents

the number of places the decimal point needs to be moved.

Consider a number 241,506,800

In Floating Point Representation

mantissa 0.241506800 exponent is 9.

IEEE standard for floating point Format

Institute of Electrical & Electronics Engineers has produced a standard for floating

point format arithmetic (i.e. ANSI / IEEE 754-1985). This standard specifies

single precision (32bit), double precision (64bit) and quadruple precision (128bit)

floating point numbers are to be represented and how arithmetic operation is to be

performed.

Sign Exponent Fraction

In the fractional part, the binary point is understood to be on the left of 23 bits.

Effectively, there are 24 bits because in any binary number the left most bit (most

significant bit) is always one; therefore it is understood to be there although it does

not occupy an actual bit position.

The eight bits in the exponent represent biased exponent, which is obtained by

CHAPTER 2. NUMBER SYSTEMS 28

adding 127 to the actual exponent. The purpose of the bias is to allow very large

and very small numbers without requiring another sign bit for exponent. The biased

exponent allows a range of actual exponent values from -126+128.

Example: Consider 1011010010001

expressing number in fractional form 1.011010010001 × 212 Assuming a positive

number S = 0, the exponent is 12 and therefore the biased-exponent would be

127 + 12 = 139 i.e. 10001011 in binary. The fractional part of the number

.011010010001, because there is always a 1 to the left of binary point its not

mentioned in the mantissa. The complete floating point number would be:

0 10001011 011010010001

Example: Consider

1 10010001 10001110001000000000000

Number = (−1)S(1 + F) × 2(E−127)

inserting the details of the number above we have

Number = (−1)1(1.10001110001000000000000) × 2(145−127)

−1 × (1.10001110001000000000000)218 = −1100011100010000000

The floating point binary is equivalent of -407,688 in decimal.

A 32-point floating point number can replace a binary integer having size of 129 bits.

Since the exponent determines the position of binary point, numbers containing both

integer and fractional parts can be represented.

There are two exceptions to the format for floating point numbers, the number 0.0

is represented by all 0s and infinity is represented by all 1s in the exponents and all

0s in the mantissa.

Chapter 3
Boolean Algebra & Logic Gates

The objective of this chapter is to study Combinatorial Logic, Analysis and

Synthesis of Boolean expressions to achieve simple circuits.

A⃝ Basic Definitions D⃝ Boolean Functions

B⃝ Axioms of Boolean Algebra E⃝ Canonical and Standard forms

C⃝ Theorems & Properties F⃝ Simplification Techniques

This chapter concerns itself with the fundamental logic operator (i.e. the logic gates)

and their combination to create complex logic circuits i.e. combinatorial circuits

. The chapter briefly discusses the axioms of Boolean algebra, the techniques to

simplify boolean expressions and physical limitations effecting the performance of

logic gates.

29

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 30

3.1 Logic Gates

Inverter

The inverter (Not Circuit) performs the operation called inversion or complementa-

tion. The inverter changes one logic level to the opposite level. In terms of bits, it

changes 1 to a 0 and 0 to a 1.

The standard logic symbol for inverter and its Truth Table is illustrated below:

x̄x

x x̄

Figure 3.1: Logic symbol for NOT-gate.

Truth Table

A X = A

0 1

1 0

Table 3.1: Truth Table for NOT-gate.

And-Gate

An And gate produces a HIGH output only when all the inputs are HIGH. When

any of the inputs is LOW, the output is LOW. Therefore, the basic purpose of an

AND gate is to determine when certain conditions are simultaneously true.

The operation of a 2-input AND gate can be expressed as:

X = AB (3.1)

The standard logic symbol for AND-gate and its Truth-Table is illustrated below:

B

A
X

Figure 3.2: Logic symbol for AND-gate.

Truth Table

A B X = AB

0 0 0

0 1 0

1 0 0

1 1 1

Table 3.2: Truth Table for AND-gate.

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 31

Or-Gate

An OR gate produces a HIGH output only when any one the inputs are HIGH.

Therefore, the basic purpose of an OR gate is to determine when any of the condi-

tions is true.

The operation of a 2-input OR gate can be expressed as:

X = A + B (3.2)

The standard logic symbol for OR-gate and its truth-table is illustrated in figure

below:

B

A
X

Figure 3.3: Logic symbol for OR-gate.

Truth Table

A B X = A + B

0 0 0

0 1 1

1 0 1

1 1 1

Table 3.3: Truth Table for OR-gate.

NAND-Gate

The NAND gate is popular logic element because it can be used as a universal gate;

that is NAND gates can be used in combination to perform the AND, OR and

inverter operations.

A NAND gate produces a LOW output only when all the inputs are HIGH. When

any of the inputs is LOW, the output will be HIGH.

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 32

B

A
X

Figure 3.4: Logic symbol for

NAND-gate.

Truth Table

A B X = AB

0 0 1

0 1 1

1 0 1

1 1 0

Table 3.4: Truth Table for NAND-gate.

Design of Logic Gates at Transistor Level

All logic gates are composed of transistors. The transistors operate with active low

or active high input. From the pictures it is apparent that a gate of inverter logic

requires two transistors.

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 33

Gate

Source

Sink

Gate

Source

Sink

xx

5vdc

xy
y

x

5vdc

5vdc

xy

x

y

5vdc

x+ y

x

y

3.2 Axioms of Boolean Algebra

The basic laws of Boolean Algebra are enumerated below:

Commutative Laws: The commutative law of addition for two variables is written

as

A + B = B + A

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 34

B

C
A

B

A

C (AB)C A(BC)

B

C
A

B

A

C (AB)C A(BC)
B

A

C (A+B)+C

B

C
A

A+(B+C)

which means it makes no difference in which way variables are ORed. The commu-

tative law of multiplication for two variables is written as

AB = BA

Associative Laws: The associate law of addition is written as follows for three

variables

A + (B + C) = (A + B) + C

Similarly, the associate law of multiplication is written as follows for three variables

A(BC) = (AB)C

Distributive Law: The associate law of addition is written as follows for three

variables

A(B + C) = AB + AC

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 35

Key Properties of Boolean Algebra
1. A + 0 = A 7. A · A = A

2. A + 1 = 1 8. A · Ā = 0

3. A · 0 = 0 9. ¯̄A = A

4. A · 1 = A 10. A + AB = A

5. A + A = A 11. A + ĀB = A + B

6. A + Ā = 1 12. (A + B)(A + C) = A + BC

0

0
X = 0

A = 0

A = 1

X = 1

A+ 0 = A

1

1

X = 1

X = 1

A = 1

A = 0

A+ 1 = 1

0

0

X = 0

A = 0
X = 0

A = 1
A · 0 = 0

1

1
X = 0

X = 1

A = 0

A = 1

A · 1 = 1

X = 0

X = 1

A = 0

A = 0

A = 1

A = 1

A+ A = A

X = 1

X = A+ Ā = 1
A = 0

Ā = 1

A = 1

Ā = 0

X = 1

X = 0

X = 1

A · Ā = 0
A = 0

A = 0

A = 1

A = 1

X = 0

X = 1

A · Ā = 0
A = 0

A = 0

A = 1

A = 1

Ā = 0

A = ¯̄A

Ā = 1
A = 0

A = 1

¯̄A = 0

¯̄A = 1

A

B

A

A+ (AB) = A

X = A

A

B

B

A

A+AB
A

B

C

C

B

A

X

(A+B)(A+ C) = A+BC

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 36

3.2.1 DeMorgan’s Theorem

DeMorgan, a mathematician who knew Bool, proposed two theorems that are im-

portant part of the Boolean Algebra. The theorems are stated below:

X Y = X̄ + Ȳ

X + Y = X Y

X

Y

X

Y

X + Y

XY X

Y

X

Y

X + Y

X Y

These statements can be easily verified with the help of Truth Tables.

Examples:

a. (A + B + C)D

using the identity X Y = X + Y , we may write

(A + B + C)D = (A + B + C) + D

Again applying DeMorgan’s theorem to (A + B + C) = A B C

(A + B + C)D = A B C + D

b. ABC + DEF

using the identity X + Y = X Y , we may write,

ABC + DEF = (ABC)(DEF)

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 37

using identity XY = X + Y

(ABC)(DEF) = (A + B + C)(D + E + F)

c. AB + CD + EF

using the identity X + Y + Z = X Y Z, we may write

AB + CD + EF = (AB)(CD)(EF)

applying DeMorgan’s theorem to individual components, we have

(AB)(CD)(EF) = (A + B)(C + D)(E + F)

3.2.2 Simplification Using Boolean Algebra

A logical expression can be reduced to its simplest form or changed to more conve-

nient form to implement the expression most efficiently using Boolean algebra. This

section demonstrates the application of basic laws, rules and theorems of boolean

algebra to manipulate and simplify an expression.

Analysis of Logic Circuit with Truth Table

Once the Boolean expression for a given logic circuit has been determined, truth

table shows the output for all possible values of the input variables. The num-

ber of possible i input combination is 2n, where n is the number of input variables.

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 38

A B C D A(B+CD)

0 0 0 0 0

0 0 0 1 0

0 0 1 0 0

0 0 1 1 0

0 1 0 0 0

0 1 0 1 0

0 1 1 0 0

0 1 1 1 0

1 0 0 0 0

1 0 0 1 0

1 0 1 0 0

1 0 1 1 1

1 1 0 0 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 1

B

A

C

D
CD

B+CD

A(B+CD)

Example:Using Boolean Algebra techniques, simplify this expression:

AB + A(B + C) + B(B + C) (3.3)

Step 1: Apply distributive law to expand the 2nd and 3rd terms of the expression

AB + AB + AC + BB + BC

Step 2: According to Rule 7 A · A = A

AB + AB + AC + B + BC

Step 3: According to Rule 5 AB + AB = AB

AB + AC + B + BC

Step 4: According to Rule 10 AB + B = B

B + AC

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 39

3.3 Universal Gates

The universality of NAND and NOR gates means that they can be used as an

inverter and their combinations can be used as AND / OR gates.

3.3.1 The NAND Gate as Universal Logic Element

The NAND gate is a universal gate because it can be used to produce NOT, AND,

OR and NOR functions; These implementations are illustrated below:

Inverter
A A A A

AND
A

B

AB
AB = AB

A

B

AB

OR

A

B
G2

G3

G1
A

B

A B = A+B
A

B

A+B

NOR

B

A

A

B

A+B

G1

G2

G3 G4

A B
A

B

A+B

3.3.2 The NOR Gate as Universal Logic Element

Like NAND gate NOR gate can be used to produce NOT, AND, OR and NAND

functions; These implementations are illustrated below:

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 40

Inverter
A A A A

OR A

B

A+B

A+B

A

B

A+B

AND

A

B
G2

G3

G1

A

B

A+B = AB

A

B

AB

NAND

B

A

A

B

G1

G2

G3 G4

A+B

AB

A

B

AB

3.4 Canonical and Standard Forms

All boolean expressions regardless of their form can be converted into either of two

standard form: the sum-of-products and the product-of-sums. Standardization of

boolean expression makes simplification much more systematic and straight forward.

3.4.1 Sum of Products Notation

When two of more products terms are summed by boolean addition, the resulting

expression is a sum-of-products (SOP); Some examples are

A + ABC

ABC + CDE + B̄CD̄

ĀB + ĀBC̄ + AC

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 41

a. A SOP expression can have a single-variable term term.

b. After simplification the final expression would be a single expression or SOP.

c. Any of the variables can have bars e.g. ĀB̄C̄, however ABC is not allowed

d. SOP expression can be implemented by ORing the outputs produced from AND-

ing of each term. This can be implemented as follows:

A

B

A

C

B

D

C X

A

B

A

C

B

D

C X

Standard SOP expression is in one which all the variables in the domain appear in

each product term in expression. For example AB̄CD+ ĀB̄CD̄+ABC̄D̄; Standard

SOP expressions are important in constructing truth tables and Karnaugh map sim-

plification method.

Example: AB̄C + ĀB̄ + ABC̄D

i. First term AB̄C is missing D, therefore AB̄C(D + D̄) yields AB̄CD + AB̄CD̄.

ii. Second term ĀB̄ is missing C and D there we will have ĀB̄CD + ĀB̄C̄D +

ĀB̄CD̄ + ĀB̄CD̄

iii. The Standard SOP expression looks like:

AB̄CD + AB̄CD̄ + ĀB̄C̄D̄ + ĀB̄C̄D + ĀB̄CD̄ + ĀB̄CD + ABC̄D

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 42

3.4.2 Product of Sums Notation

When two or more sum terms are multiplied, the resulting expression is a Product-

of-sums (POS); Some examples are

(Ā + B)(A + B̄ + C)

(Ā + B̄ + C̄)(C + D̄ + E)(B̄ + C + D)

(A + B)(A + B̄ + C)(Ā + C)

a. A POS expression can have a single-variable term.

b. In a POS expression bar cannot extend over more than one variable e.g. Ā+B̄+C̄,

however A + B + C is not allowed.

c. POS expression can be implemented by ANDing the outputs produced from

ORing of each term. This can be implemented as follows:

A

B

A

C

B

D

C

3.5 Simplification Techniques

Karnaugh map provides a systematic method for simplifying Boolean expressions;

through its applications one case determine the simplest SOP and POS expressions

for a logical circuit. The expression is known as Canonical or Minimal expression.

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 43

Karnaugh map is similar to truth table as it presents all possible values of input

variables and resulting output for each combination. Karnaugh map is a powerful

way of graphically visualizing behaviour of logic circuits. The method can be used

most conviniently for 2, 3 and 4 variable problems.

The K-maps for 2,3 and 4 variables are illustrated below:

B

A

0 1

0

1

B

A

0 1

0

1

ĀB̄ ĀB

AB̄ AB

C

AB

0 1

00

01

11

10

C

AB

0 1

00

01

11

10

ĀB̄C̄ ĀB̄C

ĀBC̄ ĀBC

AB̄C̄ AB̄C

ABC̄ ABC

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 44

CD

AB

00 01 11 10

00

01

11

10

CD

AB

00 01 11 10

00

01

11

10

ĀB̄C̄D̄ ĀB̄C̄D ĀB̄CD̄ĀB̄CD

ĀBC̄D̄ ĀBC̄D ĀBCD̄ĀBCD

AB̄C̄D̄ AB̄C̄D AB̄CD̄AB̄CD

ABC̄D̄ ABC̄D ABCD̄ABCD

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 45

Process of using K-MAPs

a. Select a K-map according to the total number of variables.

b. Identify maxterms or minterms as given in the problem.

c. For SOP, put the 1‘s in the blocks of the K-map with respect to the minterms

(elsewhere 0‘s).

d. For POS, putting 0‘s in the blocks of the K-map with respect to the maxterms

(elsewhere 1‘s).

e. Making rectangular groups that contain the total terms in the power of two, such

as 2,4,8 ..(except 1) and trying to cover as many numbers of elements as we can

in a single group.

f. From the groups that have been created in step (e.), find the product terms and

then sum them up for the SOP form.

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 46

3.6 Timing, Power & other Considerations

The logic IC of 74 family are implemented through various semi-conductor materials

and manufacturing technologies. A brief description of these variants is presented

in table below:

3.6.1 Logic IC Family 74xxabc

These ICs are pin compatible and come in a variety of specifications with the basic

difference in semi-conductor technologies. The minimal list of the semi-conductor

technologies is presented below:

Circuit Type Description Technology

LS Low Power Schottky Bipolar

ALS Adv Low Power Schottky Bipolar

HS High Speed CMOS CMOS

LVC Low Voltage CMOS CMOS

F Fast Bipolar

The 74xx series family of IC’s has hundreds of unique logic circuits, the table be-

low, only a select few circuits are enumerated: Pin diagrams of various popular

components of IC’s 74xx-series are tabulated below:

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 47

Table 3.5: The Selected list of circuits from 74xx ICs family.

7400 quad 2-input NAND gate 7481 16-bit random access memory

7402 quad 2-input NOR gate 7483 4-bit binary full adder

7404 hex inverter 7484 16-bit random access memory

7408 quad 2-input AND gate 7485 4-bit magnitude comparator

7410 triple 3-input NAND gate 7486 quad 2-input XOR gate

7420 dual 4-input NAND gate 7491 8-bit shift register, serial In/out

7427 triple 3-input NOR gate 7493 4-bit binary counter

7430 8-input NAND gate 7494 4-bit shift register

7432 quad 2-input OR gate 74104 J-K master-slave flip-flop

7442 BCD to dec. decoder 74121 Monostable multi-vibrator

7444 excess-3-Gray to decimal decoder 74138 3 to 8-line demux

7456 50:1 frequency divider 74145 BCD to decimal decoder/driver

7457 60:1 frequency divider 74148 8 to 3-line priority encoder

7468 dual 4 bit decade counters 74151 8 to 1-line data mux

7469 dual 4 bit binary counters 74154 BCD to decimal decoder/driver

7470 +edge trig J-K flip-flop 74166 ||-Load 8-bit shift register

7472 J-K master-slave flip-flop 74171 quad D-type flip-flops

7473 dual J-K flip-flop with clear 74180 9-bit odd/even parity gen/chk

7474 dual D +ve edge trig flip-flop 74182 lookahead carry generator

7475 4-bit bistable latch 74194 4-bit bi-direct shift register

7479 dual D flip-flop 74195 4-bit parallel-access shift register

7480 gated full adder 74198 8-bit bi-direct shift register

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 48

1

2

4

5

9

10

7

12

13
11

8

6

3

14 VCC

GND

7400

1

2

4

5

9

10

7

12

13
11

8

6

3

14 VCC

7402

GND 7

14

11

1312

10

8

5

3

1

9

6

4

2

VCC

GND

7404

1

2

4

5

9

10

7

12

13
11

8

6

3

14

GND

VCC
7408

7

14

4

3

5

10

11

12

6

8

1

2

13

9

VCC

GND

7410

7

14

4

3

5

10

11

12

6

8

1

2

13

9

VCC

GND

7411

7

14

6

1

2

4

5

9

10

12

13

8

VCC

GND

7420

7

14

6

1

2

4

5

9

10

12

13

8

VCC

GND

7421

7

14

4

3

5

10

11

12

6

8

1

2

13

9

VCC

GND

7427

7

14

8

6

5

4

3

2

1

11

12

VCC

GND

7430

1

2

4

5

9

10

7

12

13
11

8

6

3

14 VCC

GND

7432

1

2

4

5

9

10

7

12

13
11

8

6

3

14 VCC

GND

7486

There are several parameters which define the performance of integrated circuits

such as switching speed measured in terms of propagation delay time, the power

dissipation, the fan out or drive capability, the speed power product and the in-

put/output logic levels. All of these features are discussed further:

Propagation Delay Time

This parameter is a result of the limitation of switching speed or frequency at which

a logic circuit can operate.

Propagation Delay: is

a major factor limiting

the processing speed of

digital systems.

Note!

The switching speed of a circuit is inversely proportional

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 49

to its propagation delay. The propagation delay tp of a logic gate is the time interval

between transition of an input pulse and the occurrence of resulting transition of

the output pulse. There are two different measurements of propagation delay time

associated with a logic gate that apply to all the types of basic gates:

• tP HL: the time between a specified reference point on the input pulse and

a corresponding reference point on the resulting output pulse with output

changing from High Level to Low Level (HL).

• tP LH : the time between a specified reference point on the input pulse and

a corresponding reference point on the resulting output pulse with output

changing from Low Level to High Level (LH).

L

H

L

H

50%

50%

tPHL tPLH

For HCT family CMOS, the propagation delay is 7 nS, for AC family it is 5 nS for

the ALVC family it is 3 nS, for standard-family Bipolar (TTL) gates typical delay

is 11 nS and for F family it is 3.3 nS.

DC Supply Voltage (VCC)

The typical DC supply voltage for CMOS logic is either 5V, 3.3V, 2.5V and 1.8V,

depending on the category. An advantage of CMOS is that the supply voltage can

vary over a wider range than for a BJT (TTL) logic. The 5V CMOS can tolerate

supply variation from 2V to 6V and still operate properly although propagation

delay time and power dissipation are significantly affected.

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 50

Power Dissipation

The Power Dissipation PD of a logic gate is the product of the DC supply voltage

and the average supply current. Normally, the supply current when the gate output

is LOW is greater than when gate supply is HIGH, the average power dissipation of

logic gate is

PD = VCC

(
ICCH + ICCL

2


CMOS gates have very low power dissipations compared to the bipolar family; How-

ever, the power dissipation of CMOS is dependent on the frequency of operation;

At zero frequency the quiescent power

Quiescent Power: is

the minimal power that

is drawn by the IC no

matter what.

Note!

is typically in microwatt/gate range, and at

the maximum operating frequency it can be in low milliwatt/gate range. Therefore

power is specified at a given frequency range. The HC family, for example the power

of 2.75 µW/gate at 0 Hz (quiescent) and 600 µW/gate at 1 MHZ. Power dissipation

of bipolar gates is independent of frequency e.g. ALS family consumes 1.4 mW/gate

regardless of frequency while F family consumers 6mW/gate.

Speed-Power Product

The parameter speed-power product (SPP) can be used as a measure of a logic

circuit taking into account the propagation delay time and the power dissipation. It

is specially useful for comparing the various logic gate series within the CMOS and

bipolar technology family.

The SPP of a logic circuit is the product of the propagation delay time and the

power dissipation and is expressed in joules.

SPP = tpPD

Fan-Out and Loading

The fan-out of a logic gate is the maximum number of inputs of the same series

in an IC family that can be connected to the gate’s output and still maintain the

CHAPTER 3. BOOLEAN ALGEBRA & LOGIC GATES 51

output voltage.

20

2

1

gate
Driving

gate
Load

Fan-out The number of equivalent gate inputs of the same family series that a logic

gate can drive. This is special significant for Bipolar logic because of the technology.

The Fan-out is specified in terms of unit loads. A unit load for a logic gate equals

one input to a like circuit.

Chapter 4
Combinatorial Functions

This chapter presents several types of combinatorial logic functions such

as adders, comparators, decoders, encoders, code converters multiplexors,

demultiplexors etc. The designs are discussed through truth-tables and

comparison of various possible implementations to determine the optimal

implementations.

A⃝ Types of Adders D⃝ Code Converters

B⃝ Comparators E⃝ Multiplexors / Demultiplexors

C⃝ Decoders / Encoders F⃝ Parity Generators / Checkers

4.1 Full / Half Adders

Adders are essential to manipulator and process data. The half-adder accepts two

binary digits on its inputs and produces two binary digits on its outputs- a sum bit

and a carry bit. The mathematical expression for the sum and carry bits are as

follows:

52

CHAPTER 4. COMBINATORIAL FUNCTIONS 53

COUT = AB∑
= A ⊕ B (4.1)

The output carry is produced as a

AND-product of input A and B while

the sum is generated with exclusive-

OR gate as illustrated below

A

B

∑
= A⊕B

COUT = AB

The full-adder accepts two binary digits and an input carry on goes on to generate

two outputs- a sum bit and a carry bit. the mathematical expression for the sum

and carry bits are as follows:

COUT = AB + (A ⊕ B) ⊕ CIN∑
= (A ⊕ B) ⊕ CIN (4.2)

The output carry is produced as a

AND-product of input A and B while

the sum is generated with exclusive-

OR gate as illustrated below

A

B

X

AB

Cin

(A+⊕B)
∑

= (A+⊕B) ⊕ Cin

(A+⊕B)Cin

Cout = AB + (A+⊕B) ⊕ Cin

The truth-table for Half and Full adders are tabulated below:

CHAPTER 4. COMBINATORIAL FUNCTIONS 54

A B Cout
∑

0 0 0 0

0 1 0 1

1 0 0 1

1 1 1 0

A B Cin Cout
∑

0 0 0 0 0

0 0 1 0 1

0 1 0 0 1

0 1 1 1 0

1 0 0 0 1

1 0 1 1 0

1 1 0 1 0

1 1 1 1 1

Two half-adders can be combined together to develop a full-adder as illustrated

below:

A

B

A

B

A

B

∑
∑

Cout

Cin

A⊕ B
sum

(A⊕B) ⊕ Cin

Output Carry

(A⊕ B)Cin

AB + (A⊕ B)Cin

Cout

∑
∑

Figure 4.1: Two half adders can be combined to yield a full-adder.

4.2 Parallel Binary Adders

Two or more full-adders connected to form parallel binary adders. The carry output

of each adder is connected to the carry input of next higher-order adder. The

implementation of 2-bit and 4-bit parallel adders is illustrated below:

CHAPTER 4. COMBINATORIAL FUNCTIONS 55

0

(LSB)

FA1FA2

A BA B Cin Cin

∑
CoutCout

∑

A1A2B2 B1

∑
1

∑
3

∑
2

Figure 4.2: Ripple Carry Circuit with two full-adders.

∑
2

∑
1

A B

∑

A B

∑

A B

∑

C4
∑

4

∑
3

FA 4 FA 1FA 2FA 3

A1B1A2B2
C0

A3 B3A4 B4

C3 C2 C1

Cin Cin A B

∑

Cin Cin

CoutCoutCoutCout

Figure 4.3: Ripple Carry Circuit with four full-adders.

4.3 Ripple Carry and Look-Ahead Carry Adders

Adders can be classified into two types, ripple carry and look-ahead carry, externally

both adders are the same in-terms of inputs and outputs, however the difference is

the speed at which they can add two numbers. Look-ahead adder is much faster

than ripple carry adder.

The Ripple Carry Adder

The ripple carry adder is one which the carry output of each full-adder is connected

to the carry input of the higher-order stage. The sum and the output carry of ay

stage can not be produced until the input carry occurs; this causes a time delay in

addition process illustrated in the 4.4. The carry delay propagation for each full-

CHAPTER 4. COMBINATORIAL FUNCTIONS 56

adder is the time from the application of the input of the carry until output carry

occurs, assuming that the inputs are already present.

1 0 1 0 1 01 1

8nS 8nS8nS8nS

1

1
0

1

1
1

LSB

1 1

MSB

FA3FA4 FA2 FA1

A B

∑
CoutCout

A B

∑

A B

∑
CoutCout

A B

∑

Cin Cin Cin Cin

Figure 4.4: The Propagation Delay Effect of Ripple Carry Circuit.

The Look-Ahead Carry Adder

The speed with which an addition can be performed is limited by the time required

for carries to propagate, or ripple through all the stages of a parallel adder. One

method of speeding up the addition process by eliminating this ripple carry delay is

called look-ahead carry addition. The look-ahead carry adder anticipates the output

carry of each stage, and based on the inputs, produces the output carry by either

carry generation or carry propagation.

Carry generation occurs when an output carry is produced (generated) internally

by the full-adder. A carry is generated when both bits are 1s. The generated carry

Cg is expressed as AND function of the two input bits, A and B.

Cg = AB

Carry Propagation occurs when the input carry is rippled to become the output

carry. An input carry may be propagated by full-adder when either or both of the

input bits are 1s. the propagated carry Cp is expressed as the OR function of the

input bits.

Cp = A + B

CHAPTER 4. COMBINATORIAL FUNCTIONS 57

The conditions for carry generation and carry propagation are illustrated in 4.5.

1 1 1 1

10 11 0 111 1011

Generated
Carry Generated Carry

Propagated Carry/
Carry

Propagated Propagated

Carry

A B

∑
CoutCout

A B

∑

A B

∑
CoutCout

A B

∑

Cin Cin Cin Cin

Figure 4.5: Conditions of Carry Generation and Carry Propagation.

The output carry of a full-adder can be expressed in terms of both the generated

carry Cg and propagated carry Cp. The output carry Cout is a 1 if the generated

carry is a 1 AND the input carry Cin is a 1.

Based on this analysis, we can now develop expression for the output carry Cout, of

each full-adder stage for the 4-bit adder.

Full Adder 1:

Cout1 = Cg1 + Cp1Cin1 (4.3)

Full Adder 2:

Cin2 = Cout1

Cout2 = Cg2 + Cp2Cin2

Cout2 = Cg2 + Cp2(Cg1 + Cp1Cin1)

= Cg2 + Cp2Cg1 + Cp2Cp1Cin1 (4.4)

Full Adder 3:

CHAPTER 4. COMBINATORIAL FUNCTIONS 58

Cin3 = Cout2

Cout3 = Cg3 + Cp3Cin3

Cout3 = Cg3 + Cp3(Cg2 + Cp2Cg1 + Cp2Cp1Cin1)

= Cg3 + Cp3Cg2 + Cp3Cp2Cp1Cin1 (4.5)

Full Adder 4:

Cin4 = Cout3

Cout4 = Cg4 + Cp4Cin4

Cout4 = Cg4 + Cp4(Cg3 + Cp3Cg2 + Cp3Cp2Cg1 + Cp3Cp2Cp1Cin1)

= Cg4 + Cp4Cg3 + Cp4Cp3Cg2 + Cp4Cp3Cp2Cg1 + Cp4Cp3Cp2Cp1Cin1 (4.6)

Note that in each of these expressions, the output carry of each full-adder stage

is dependent only on the initial carry Cin1, the Cg and Cp functions of that stage

and the Cg and Cp functions of the preceding stage; Since the Cg and Cp can be

expressed in terms of A and B inputs to the full-adders, all the output carries are

immediately available except for gate delays.

CHAPTER 4. COMBINATORIAL FUNCTIONS 59

A B A B A BA B

A2 B2 A1 B1A3 B3A4 B4

Cout4

Cout3

Cg1

Cp1

Cg2

Cp2

Cg3

Cp3

Cg3

Cp3

Cin Cin Cin Cin Cin1

Cout2

∑
4

∑
3

∑
2

∑
1

∑ ∑
Cout1

∑∑

Figure 4.6: Implementation of 4-bit Look Ahead Adder using expressions

(4.3)-(4.6).

4.4 Comparators

The basic function of a comparator is to compare the magnitudes of two binary

quantities to determine the relationship between those quantities.

Equality

In order to compare two binary numbers containing two bits each an additional

exclusive NOR gate is necessary. The two LSBs of the two numbers are compared

by gate G1 and the two MSBs are compared by gate G2 are illustrated in the figure.

CHAPTER 4. COMBINATORIAL FUNCTIONS 60

B_1

A0

B0

A1

A2

B2

A3

B3

A = B

0

3

0

3

COMP
A0

A1

A2

A3

A0

A1

A2

A3

A > B

A = B

A < B

Figure 4.7: Circuit and Functional diagram of a 4-bit Comparator

Inequality

In addition to the equality output, fixed-function comparators can provide additional

output that indicate which of the two binary numbers being compared is larger.

That is, there is an output that indicates when number A is larger. That is, there

is an output that indicates when number A is greater than number B (A > B)

and output that indicates when number A is less than number B (A < B). These

three operations are valid of each bit position. The general procedure used in a

comparator is to check for inequality in a bit position, starting with the highest-

order bits, When such inequality is found in a bit position, the relationship of the

two numbers is established.

4.5 Decoder / Encoder

Basic Binary Decoder

A decoder is a digital circuit that detects the presence of a specified combination of

bits (codes) on its input and indicates presence of that code by a specified output

level. In general a decoder has n input lines to handle n−bits and one to 2n output

CHAPTER 4. COMBINATORIAL FUNCTIONS 61

lines to indicate presence of one or more n−bit combinations. The operation of

3-line-to-8-line (1-of-8) decoder is presented in table below:

Decimal Binary Inputs Decoding Function Outputs

Digit A2 A1 A0 1 2 3 4 5 6 7 8

0 0 0 0 Ā2Ā1Ā0 1 0 0 0 0 0 0 0

1 0 0 1 Ā2Ā1A0 0 1 0 0 0 0 0 0

2 0 1 0 Ā2A1Ā0 0 0 1 0 0 0 0 0

3 0 1 1 Ā2A1A0 0 0 0 1 0 0 0 0

4 1 0 0 A2Ā1Ā0 0 0 0 0 1 0 0 0

5 1 0 1 A2Ā1A0 0 0 0 0 0 1 0 0

6 1 1 0 A2A1Ā0 0 0 0 0 0 0 1 0

7 1 1 1 A2A1A0 0 0 0 0 0 0 0 1

4.5.1 Encoder

Encoder is a combinatorial logic circuit that essentially performs the reverse decoder

function. An encoder accepts an active level on one of its inputs representing a

decimal or octal digit and converts it into coded output such as BCD or binary.

Implementation of BCD Code using Encoder

This type of encoder would has ten inputs-one for each decimal digits and four out-

puts corresponding to the BCD code, as illustrated in Fig. 4.8. Table 4.1 represents

truth table of the BCD encoder. The logic circuitry required for encoding each

decimal digit to a BCD code by using logic expression is illustrated as follows:

CHAPTER 4. COMBINATORIAL FUNCTIONS 62

Table 4.1: Truth Table of a BCD

Encoder.

Decimal A3 A2 A1 A0

Input

0 0 0 0 0

1 0 0 0 1

2 0 0 1 0

3 0 0 1 1

4 0 1 0 0

5 0 1 0 1

6 0 1 1 0

7 0 1 1 1

8 1 0 0 0

9 1 0 0 1

2

1

3

4
5
6

7

8

9

A0

A1

A2

A3

Figure 4.8: Circuit diagram of a

BCD Encoder.

The Decimal-to-BCD Priority Encoder

This type of encoder performs the same basic encoding function as previously dis-

cussed. A priority encoder also offers additional flexibility in that it can used to

in applications that require priority detection. This priority function means that

the encoder will produce a BCD output corresponding to the highest-order decimal

digit.students may be asked to design 3-bit priority encoder.

4.6 Multiplexers and Demultiplexers

A multiplexer (MUX) is a device that allows digital information from several sources

to be routed onto a single line for transmission over to a common destination. The

logical symbol of multiplexer is illustrated in fig 4.9. The behaviour of function

CHAPTER 4. COMBINATORIAL FUNCTIONS 63

Inputs Outputs

D3 D2 D1 D0 B A

0 0 0 0 x x

0 0 0 1 0 0

0 0 1 x 0 1

0 1 x x 1 0

1 x x x 1 1

Table 4.2: The truth-table of a 4 input/2 output priority encoder.

Data-Select Inputs Selected

S1 S0 Input

0 0 D0

0 1 D1

1 0 D2

1 1 D3

Table 4.3: Truth Table of a 4:1 Multiplexer.

of 1-of-4 multiplexer is illustrated in table 4.3 and circuit diagram is illustrated in

fig.4.9

The Boolean Expression for data output can be described as:

Y = D0S̄1S̄0 + D1S̄1S0 + D2S1S̄0 + D3S1S0

The implementation of this expression requires 3-input AND gate and a 4-input OR

gate and two inverter. The circuit is also referred to as Data Selectors.

Multiplexer Use Cases

Multiplexor is a versatile device, can be configured to work in a host of different

applications, a select few applications are presented below:

CHAPTER 4. COMBINATORIAL FUNCTIONS 64

Y

S0

S1

D0

D3

D2

D1

MUX

Y

S0

S1

D0

D1

D2

D3

Figure 4.9: Circuit diagram and Functional Block diagram of a Multiplexer.

MUX

Y0

1

2

3

4

5

6

7

5vdc

A2

A2

A0

+A2Ā1A0

+A2A1Ā0

+Ā2Ā1A0

Ā2Ā1A0

Y

0

2
1

MUXMUX

Y

0

1

D0

D1

D2

D3

S0

S1

S2

D4

D5

D6

D7

1

0

B

A

Mux−1 Mux−2

D0

D1

D2

D3

D0

D1

D2

D3

Cin

∑
Cout

Demultiplexer

A demultiplexer basically reverses the multiplexing function. It takes digital infor-

mation from one line and distributes it to a given number of output lines. for this

reason a demultiplexer is also known as a data distributor. The circuit diagram of

a 1-line-to-4 demultiplexer circuit is illustrated in fig 4.10.

CHAPTER 4. COMBINATORIAL FUNCTIONS 65

Data

in D0

D1

D2

D3

S1

S0

DEMUX

Data

in

D0

D1

D2

D3

S0

S1

Figure 4.10: Circuit diagram and Functional Block diagram of a Multiplexer.

4.7 Parity Generator / Checkers

Errors can occur as digital codes are being transferred from one point to another

within a digital system. These errors can create undesirable effects and must be

prevented from happening, detected and corrected as required.

In parity method of error detection, a Parity Bit is attached to a group of information

bits in order to make total number of 1s bits either even or odd.

The sum (disregarding the carries) of an even number of 1s is always 0, and the

sum of an odd number of 1s is always 1.

To determine the parity of a given code the bits are added modulo-2 using exclusive-

or gates.

Please discuss implementation of 1’s and 2’s complement with logic gates.

CHAPTER 4. COMBINATORIAL FUNCTIONS 66

X

XX

A0

A1

A2

A3

A4

A5

A6

A7

A8

A9

A0

A1

A2

A3

A0

A0

Figure 4.11: Circuit diagram and 2 / 4 and 9 bit words.

Chapter 5
Behavioural Model of Digital Circuits

The objective of this chapter is to introduce to the behavioural modelling

of digital circuits. This is very important because this powerful tool can

help students develop complicated circuits and validate their performance

without even implementing them on the hardware.

A⃝ Modeling of Gates D⃝ Adder Circuit

B⃝ Modeling of Sequential Circuit E⃝ Multiplexer / De Multiplexer

C⃝ Structural Design F⃝ Traffic Circuit Implementation.

Introduction

5.1 Behavioural Modelling of Gates

Hardware description language differs from software programming languages be-
cause HDL include ways of describing logic connections and characteristics. A HDL
implements a logic design in hardware i.e. Programmable Logic Devices (PLD),
where are software programming language, such as C or Basic instruct existing
hardware what to do. Two standard HDLs are used for programming namely Very
High Speed Integrated Circuit (VHSIC) Hardware Description Language (VHDL)

67

CHAPTER 5. BEHAVIOURAL MODEL OF DIGITAL CIRCUITS 68

and Verification Logic (Verilog). Table below illustrates basic implementation of
Logic gates using VHDL. A VHDL implementation has entity/architecture struc-
ture. The entity describes the logic structure the input/output or ports, whereas
the architecture describes the logic operations.

A A

e n t i t y i n v e r t e r i s

port (A i n b i t ; X out b i t) ;

end e n t i t y i n t e r t e r ;

a r c h i t e c t u r e NOTfunction o f i n v e r t e r

i s

begin

X<= not A;

end a r c h i t e c t u r e NOTfunction

B

A
X

e n t i t y ANDgate i s

port (A,B i n b i t ; X out b i t) ;

end e n t i t y ANDgate ;

a r c h i t e c t u r e ANDfunction o f ANDgate i s

begin

X<= A and B

end a r c h i t e c t u r e ANDfunction

B

A
X

e n t i t y ORgate i s

port (A,B i n b i t ; X out b i t) ;

end e n t i t y ORgate ;

a r c h i t e c t u r e ORfunction o f ORgate i s

begin

X<= A or B;

end a r c h i t e c t u r e ORfunction

X

A

B

C

e n t i t y NANDgate i s

port (A, B,C i n b i t ; X out b i t) ;

end e n t i t y NANDgate ;

a r c h i t e c t u r e NANDfunction o f NANDgate

i s

begin

X<= A nand B nand C;

end a r c h i t e c t u r e NANDfunction

B

A
X

i n v e r t e r symbol

e n t i t y XNORgate i s

port (A,B i n b i t ; X out b i t) ;

end e n t i t y XNOR;

a r c h i t e c t u r e XNORfunction o f XNORgate

i s

begin

X<= A xnor B;

end a r c h i t e c t u r e XNORfunction

The ability to create simple and compact code is important in a VHDL program.

Now we consider several examples illustrating the implementing Boolean expressions

CHAPTER 5. BEHAVIOURAL MODEL OF DIGITAL CIRCUITS 69

in VHDL.

Example 1:

X = (AC + BC + D) + BC

The straight forward implementation of this expression in VHDL would look like

entity OriginalLogic is

port(A,B,C,D: in bit; X: out bit);

end entity OriginalLogic

architecture Expression1 of OriginalLogic is

begin

X<=not((A and C) or not(B and not C) or D) or not(not(B and C));

end architecture Expression1;

however, by selectively applying DeMorgan’s theorem and axioms of Boolean Alge-

bra, you can reduce the Boolean expression to the canonical form.

(AC + BC + D) + BC = (AC)(BC)D + BC

= (AC)(BC)D + BC

= (A + C)BCD + BC

= ABCD + BCD + BC

= BCD(1 + A) + BC

= BCD + BC

After application of axioms of Boolean algebra the implementation of this simplified

expression in VHDL would look like

entity ReducedLogic is

port(A,B,C,D: in bit; X: out bit);

end entity ReducedLogic

architecture Expression2 of ReducedLogic is

CHAPTER 5. BEHAVIOURAL MODEL OF DIGITAL CIRCUITS 70

begin

X<=(B and not C and not D) or (B and C);

end architecture Expression2;

Example 2: Implement the following SOP expression in VHDL without and with

simplification

X = ĀB̄C̄D̄ + ĀB̄C̄D + ĀBC̄D̄ + ĀBCD̄ + ĀB̄CD̄ + AB̄C̄D̄

+ AB̄CD̄ + ABCD̄ + ABC̄D̄ + AB̄C̄D + ĀBC̄D + ABC̄D

The straight forward implementation of this expression in VHDL would look like

entity OriginalSOP is

port(A,B,C,D: in bit; X: out bit);

end entity OriginalSOP

architecture Equation1 of OriginalSOP is

begin

X<=(not A and not B and not C and not D) or

(not A and not B and not C and D) or

(not A and B and not C and not D) or

(not A and B and C and not D) or

(not A and not B and C and not D) or

(A and not B and not C and not D) or

(A and not B and C and not D) or

(A and B and C and not D) or

(A and B and not C and not D) or

(A and not B and not C and D) or

(not A and B and not C and D) or

(A and B and not C and D)

end architecture Equation1;

CHAPTER 5. BEHAVIOURAL MODEL OF DIGITAL CIRCUITS 71

VHDL

Component

VHDL

Component

VHDL

Component

inputs defined
in port statement

Signals

in port statement
outputs defined

in
p
u
t

o
u
tp

u
t

interconnections

Logic
Device

A

Logic
Device

B

Logic
Device

C

Figure 5.1: Simplified comparison between Hardware Implementation and VHDL

Structural Implementation.

5.2 Combinational Logic with VHDL

The purpose of describing logic using VHDL is so that it can be programmed into

PLD. This section provides insight into data flow approach using Boolean expres-

sions and the structure approach are used to develop VHDL code for describing logic

circuit.

The structural approach to writing a VHDL description of a logic function can be

compared to installing IC devices of a circuit board and interconnecting them with

wires. With the structural approach, you describe logic functions and specify how

they are connected together. The VHDL component is away to predefine a logic

function for repeated use in a program or other programs. The component can

be used to describe anything from a simple logic gate to a complex logic function.

The VHDL signal can be thought of as a way to specific wire connection between

components. The simplified comparison of the structural approach to a hardware

implementation on a circuit board.

CHAPTER 5. BEHAVIOURAL MODEL OF DIGITAL CIRCUITS 72

VHDL Components

A VHDL component describes predefined logic that can be stored as a package dec-

laration in a VHDL library and called as many times as necessary in a program.

VHDL Component

of AND gate can be

defined once and used

many times.

Note!

This is analoguous to having a storage bin of ICs and using them as needed.

VHDL program for any logic function can become a component and used whenever

necessary in a larger program with use of component declaration of the following

general form. Component is a VHDL keyword.

component name_of_component i s

port (p o r t _ d e f i n i t i o n s) ;

end component name_of_component ;

We have already discussed declaration of two input logic (and / or) gates with entity

names ANDgate / ORgate

B

A
X

e n t i t y ANDgate i s

port (A,B i n b i t ; X out b i t) ;

end e n t i t y ANDgate ;

a r c h i t e c t u r e ANDfunction o f ANDgate i s

begin

X<= A and B

end a r c h i t e c t u r e ANDfunction

B

A
X

e n t i t y ORgate i s

port (A,B i n b i t ; X out b i t) ;

end e n t i t y ORgate ;

a r c h i t e c t u r e ORfunction o f ORgate i s

begin

X<= A or B;

end a r c h i t e c t u r e ORfunction

Now assume we are writing a program that has several AND gates so instead of

writing the above declaration over and over again; use a component declaration to

specify AND gate. The port statement in the component declaration must corre-

spond to the port statement in the entity declaration of the AND gate.
component ANDgate i s

port (A,B i n b i t ; X out b i t) ;

end component ANDgate ;

CHAPTER 5. BEHAVIOURAL MODEL OF DIGITAL CIRCUITS 73

X

IN1

IN2

IN3

IN4 OUT2

OUT1
G1

G2

G3

Figure 5.2: An example of implementation of VHDL structural design.

To use this component in the program, instantiate each component as a request or

call for component to be used in the main program. The process of designing a

simple SOP circuit is illustrated below:

e n t i t y ANR_OR_LOGIC i s

port (IN1 , IN2 , IN3 , IN4 : i n b i t OUT3: out b i t) ;

end e n t i t y AND_OR_Logic ;

The architecture declaration contains the components declarations for the AND gate

and the ORgate, the signal definitions and the component instantiations.
a r c h i t e c t u r e LogicOperat ion o f AND_OR_Logic i s

component AND_gate i s

port (A,B: i n b i t ; X: out b i t) ;

end component AND_gate ;

component OR_gate i s

port (A,B: i n b i t ; X: out b i t) ;

end component OR_gate ;

S i g n a l OUT1, OUT2 b i t ;

begin

G1 : AND_gate port map(A=> IN1 ,B=>IN2 , X=>OUT1) ;

G2 : AND_gate port map(A=> IN3 ,B=>IN4 , X=>OUT2) ;

G3 : OR_gate port map(A=> OUT1, B=>OUT3, X=>OUT3) ;

end a r c h i t e c t u r e LogicOperat ion ;

It can be noted that component instantiations appear between the keywords begin

and end architecture statement for each instantiastion an identifier is defined

such as G1, G2 and G3, the component name is specified. The keyword port map

CHAPTER 5. BEHAVIOURAL MODEL OF DIGITAL CIRCUITS 74

essentially makes all connections for the logic function using the operator =>.

The next example

Full Adder

A

B

X

AB

Cin

(A+⊕B)
∑

= (A+⊕B) ⊕ Cin

(A+⊕B)Cin

Cout = AB + (A+⊕B) ⊕ Cin

e n t i t y FullAdder i s

port (A, B, CIN : i n b i t ; SUM, COUT: out b i t) ;

end e n t i t y FullAdder ;

a r c h i t e c t u r e LogicOperat ion o f FullAdder i s

begin

SUM <= (A xor B) xor CIN ;

COUT<= ((A xor B) and CIN) or (A and B) ;

end a r c h i t e c t u r e LogicOperat ion ;

4-bit Full Adder

1

2

3

4

1

2

3

4

1

2

3

4
B

A

C0 C4

∑

∑

This implementation is ripple carry adder.
e n t i t y 4 BitFullAdder i s

port (A1 , A2 , A3 , A4 , B1 , B2 , B3 , B4 , C0 : i n b i t ; S1 , S2 , S3 , S4 , C4 : out b i t) ;

end e n t i t y 4 BitFul lAdder ;

a r c h i t e c t u r e LogicOperat ion o f 4 BitFul lAdder i s

CHAPTER 5. BEHAVIOURAL MODEL OF DIGITAL CIRCUITS 75

component FullAdder i s

port (A, B, CIN : i n b i t ; SUM, COUT: out b i t) ;

end component FullAdder ;

s i g n a l Cl , C2 , C3 : b i t ;

begin

FA1 : FullAdder port map (A => A1 , B => B1 , CIN => C0 , SUM => S1 , COUT => Cl) ;

FA2 : FullAdder port map (A => A2 , B => B2 , CIN => C1 , SUM => S2 , COUT => C2) ;

FA3 : FullAdder port map (A => A3 , B => B3 , CIN => C2 , SUM => S3 , COUT => C3) ;

FA4 : FullAdder port map (A => A4 , B => B4 , CIN => C3 , SUM => S4 , COUT => C4) ;

end a r c h i t e c t u r e LogicOperat ion ;

4-bit Comparator

e n t i t y 4 BitComparator i s

port (A0 , A1 , A2 , A3 , B0 , B1 , B2 , B3 : i n b i t ; AequalB : out b i t) ;

end e n t i t y 4 BitComparator ;

a r c h i t e c t u r e LogicOperat ion o f 4 BitComparator i s

begin

AequalB <= (A0 xnor B0) and (A1 xnor B1) and

(A2 xnor B2) and (A3 xnor B) ;

end a r c h i t e c t u r e LogicOperat ion ;

BCD to Decimal Encoder

e n t i t y BCDdecoder i s

port (A0 , A1 , A2 , A3 : i n b i t ; OUT0, OUT1, OUT2, OUT3,

OUT4, OUT5, OUT6, OUT7, OUT8, OUT9: out b i t) ;

end e n t i t y BCDdecoder ;

a r c h i t e c t u r e LogicOperat ion o f BCDdecoder i s

begin

OUT0 <= not (not A0 and not A1 and not A2 and not A3) ;

OUT1 <= not (A0 and not A1 and not A2 and not A3) ;

OUT2 <= not (not A0 and A1 and not A2 and not A3) ;

OUT3 <= not (A0 and A1 and not A2 and not A3) ;

OUT4 <= not (not A0 and not A1 and A2 and not A3) ;

OUT5 <= not (A0 and not A1 and A2 and not A3) ;

OUT6 <= not (not A0 and A1 and A2 and not A3) ;

OUT7 <= not (A0 and A1 and A2 and not A3) ;

OUT8 <= not (not A0 and not A1 and not A2 and A3) ;

OUT9 <= not (A0 and not A1 and not A2 and A3) ;

end a r c h i t e c t u r e LogicOperat ion ;

Decimal to BCD Encoder

CHAPTER 5. BEHAVIOURAL MODEL OF DIGITAL CIRCUITS 76

e n t i t y DecBCDencoder i s

port (D1 , D2 , D3 , D4 , D5 , D6 , D7 , D8 , D9 :

i n b i t ; A0 , A1 , A2 , A3 : out b i t) ;

end e n t i t y DecBCDencoder ;

a r c h i t e c t u r e LogicFunction o f DecBCDencoder i s

begin

A0 6= (D1 or D3 or D5 or D7 or D9) ;

A1 6= (D2 or D3 or D6 or D7) ;

A2 6= (D4 or D5 or D6 or D7) ;

A3 6= (D8 or D9) ;

end a r c h i t e c t u r e LogicFunction ;

8 to 1 Encoder

e n t i t y EightInputMUX i s

port (S0 , S1 , S2 , D0 , D1 , D2 , D3 , D4 , D5 , D6 , D7 ,

EN: i n b i t ; Y: i n o u t b i t ; YI : out b i t) ;

end e n t i t y EightInputMUX ;

a r c h i t e c t u r e LogicOperat ion o f EightInputMUX i s

s i g n a l AND0, AND1, AND2, AND3, AND4, AND5, AND6, AND7: b i t ;

begin

AND0 <= not S0 and not S1 and not S2 and D0 and not EN;

AND1 <= S0 and not S1 and not S2 and D1 and not EN;

AND2 <= not S0 and S1 and not S2 and D2 and not EN;

AND3 <= S0 and S1 and not S2 and D3 and not EN;

AND4 <= not S0 and not S1 and S2 and D4 and not EN;

AND5 <= S0 and not S1 and S2 and D5 and not EN;

AND6 <= not S0 and S1 and S2 and D6 and not EN;

AND7 <= S0 and S1 and S2 and D7 and not EN;

Y <= AND0 or AND1 or AND2 or AND3 or AND4 or AND5 or AND6 or AND7;

YI <= not Y;

end a r c h i t e c t u r e LogicOperat ion ;

VHDL implemention of two half adders make a full adder

VHDL implemention of multiplexer / demultiplexers econders and decoders

Chapter 6
Register / Counters & Memory

Outline

The chapter concerns itself with sequential logic circuits namely Bistable,

monostable and Astable logic devices.

A⃝ SR Latches D⃝ Flip-Flop Operation

B⃝ Gate Enabled SR Latch E⃝ Flip-Flop Applications

C⃝ D Latch F⃝

Basic Difference be-

tween FlipFlops and

Latches is the way

in which their state

changes from one stage

to another

Note!

Unlike the Combinatorial logic where as values for boolean expressions is applied to

the circuit the output is evaluated almost immediately; sequential circuits produce

output as different signals travel through the circuit as a function of some reference

signal ‘clock‘.

The output state of a ‘sequential logic circuit‘ is a function of the following three

states, the ‘present input‘, the ‘past input‘ and/or the ‘past output‘. Sequential

logic circuits remember these conditions and stay fixed in their current state until

77

CHAPTER 6. REGISTER / COUNTERS & MEMORY 78

the next clock signal changes on of the states, giving sequential logic circuits ‘Mem-

ory‘.

Memory

Combinational

CircuitLogicprevious
state feedback

+ve

Clock

Input Output

Signal

Sequential logic circuits are generally termed as two-state or Bistable devices which

can have their output or outputs set in one of the two basic states, a logic level ‘1‘ or

a logic level ‘0‘ and will remain latched indefinitely in this current state or condition

until some other input trigger pulse or signal is applied which will cause the bistable

to change its state once again.

The word sequential means that things happen in sequence, one after another and in

sequential logic circuit, the actual clock signal determines when things will happen

next. Simple sequential logic circuits can be constructed from standard Bistable

circuits such as flip-flops, latches and counters and which themselves can be made

by simply connecting together universal NAND and/or NOR gates in a particular

combinational way to produce the required sequential circuit.

Unlike combinatorial logic circuit that change state depending upon the actual sig-

nals being applied to their inputs at that time. Sequential logic circuits have some

form of inherent ‘Memory‘ built-in.

Sequential logic circuits use flip-flops and Latches as memory elements and in which

their output is dependent on the input state.

CHAPTER 6. REGISTER / COUNTERS & MEMORY 79

Types of Sequential Circuits

Bi-Stable device has two stable states called SET and RESET.

A Monostable multivibrator (a.k.a One Shot) has only one stable state, A one-

shot produces a single controlled-width pulse when activated or triggered.

Astable multivibrator, has no stable state and is used primarily as an oscillator,

which is a self-sustained waveform generator.

6.1 Latches

The latch is type of temporary storage device that has two stable (bistable) and is

normally placed in a category separate from that of flip-flops. Latches are similar to

flip-flops because they are bistable devices that can reside in either of two states using

a feedback arrangement, in which the outputs are connected back to the opposite

inputs.

6.1.1 Set-Reset Latches

A latch is a type of bistable logic device or multivibrator. An active-High input S-R

latch is formed with two cross-coupled NOR gates as in Fig. 6.1, an active-LOW

input SR latch is formed with two cross-coupled NAND gates, as in Fig. 6.2. This

produces a regenerative feedback that is characteristic of all latches and flip-flops.

Latches and flip-flops

differ in the method

used for changing their

state.

Note!

The characteristic equation for SR latch with NOR gate implementation is

Q+ = S + R̄Q

Note that SR-Latch with NOR gate implementation is active HIGH input (at any

given time one of the two inputs must be HIGH), while NAND gate implementation

is active LOW input (at any given time one of the two inputs must be LOW).

CHAPTER 6. REGISTER / COUNTERS & MEMORY 80

00 Q

S R

0

0

1

1

0

1

?1 1

S

R
Q

Q+
Q̄

Figure 6.1: Circuit diagram and Truth Table of SR latch with NOR Gate

implementation.

S R

0

0

1

1

1 1

00

Q

0

1

?
QS

R

Q+

Q̄

Figure 6.2: Circuit diagram and Truth Table of SR latch with NAND Gate

implementation.

CHAPTER 6. REGISTER / COUNTERS & MEMORY 81

S

1

1

0

0

X

RE

1 ?

0 1

1 0

0 Q

Q

1

1

0

0

0 X

E

S

R
Q

Q+

Q̄

E

S

R

Q

RE

1

0

0

0

S

1

X X

10

01

0 0

0 1

Q

?

Q

1

0

Q+

Q̄

Figure 6.3: Circuit diagram and Truth Table of Gated SR latch with NOR and

NAND Gate implementation.

6.1.2 Gated Set-Reset Latches

The gated SR-Latch requires an enable input (EN), the logic diagram and truth-

table (for both NOR and NAND gate) are illustrated in figure 6.3. The S and R

inputs control the state to which the latch will go as the EN signal is applied. The

latch will not change until EN is HIGH, but as long as it remains HIGH the output

will be controlled by the state of S and R input. The gated-latch is a level-sensitive

device.

6.1.3 DATA Latches

This is another type of gated latch; it differs from the S-R latch because it has only

one input in addition to EN. This input is called Data input; the logic diagram and

the symbol are illustrated in figure 6.4. When D input is high, the latch will set;

CHAPTER 6. REGISTER / COUNTERS & MEMORY 82

E

D

Q

E

X Q

D

0

1

0

1

1

0

1

Q̄ Q+

E

D

Q

E

X Q

D

0

1

0

10

1

0

Q+
Q̄

Figure 6.4: Circuit diagram and Truth Table of D latch with NOR and NAND

Gate implementation.

The output Q will follow the D input when EN is HIGH.

6.2 Flip-Flops

Flip Flops are synchronous bistable devices; also known as bistable multivibrators.

In this case, the term synchronous means that the output changes only at a specified

point (leading trailing edge) of the triggering input called clock (CLK). In synchro-

nization with the clock the Flip-Flops are edge-triggered or edge-sensitive whereas

gates latches are level sensitive.

An edge-triggered flip-flop changes state either at the positive edge (rising edge) or

at negative edge (falling edge) of the clock pulse and is sensitive to inputs only at

this transition of the clock.

CHAPTER 6. REGISTER / COUNTERS & MEMORY 83

6.2.1 D Flip-Flop

The D input of the D flip-flop is a synchronous input because data on the input are

transferred to the flip-flop‘s output only at the triggering edge of the clock pulse.

When D is HIGH, the Q output goes HIGH on the triggering edge of the clock pulse.

and teh Flip-Flop is SET. When D is low, the Q output goes LOW on the triggering

edge of the clock pulse and the flip-flop is RESET.

K

J

CLK

Q

CLK

D

QM

Q

Q̄

6.2.2 The JK Flip-Flop

The J and K inputs of the J-K flip-flop are synchronous devices. They are refinement

of Gated RS Latches in that the indeterminate state of RS latches is defined in JK

type. The inputs J and K behave like inputs S and R to set and clear the flip-flop,

respectively. The input marked J is for set and K is for reset. When both J and

K are HIGH, the flip-flop switches to its complement state. The circuit diagram,

truth-table and symbol are illustrated in figure ??.

CHAPTER 6. REGISTER / COUNTERS & MEMORY 84

CLK

K

J

Q

Q̄

Figure 6.5: Basic logic circuit of JK

Flip-Flop .

J K Q Q+ Q̄+

0 0 0 0 1

0 0 1 1 0

0 1 0 0 1

0 1 1 0 1

1 0 0 1 0

1 0 1 1 0

1 1 0 1 0

1 1 1 0 1

Table 6.1: Truth Table for JK Flip-Flop.
Feedback timing issue: it is very important to realize that because of the feedback

connection in the JK flip-flop, a CLK pulse that remains in the 1 state while both

J and K are equal to 1 will cause the output to complement again and again until

the CLK pulse goes back to 0. To avoid this undesirable operation, the clock pulse

must have a time duration that is shorter than the propagation delay time of the

flip-flop. This is a restrictive requirement, since the operation of the circuit depends

on the width of the pulse. for this reason JK flip-flops are never built in the way

illustrated in figure 6.5. The restriction on the pulse width can be eliminated with

a master-slave or edge-triggered constructions.

6.2.3 The T Flip-Flop

The T flip-flop is a single-input version of the JK flip-flop. The T flip-flop is obtained

from the JK flip-flop when both inputs are tied together. The designation T comes

from the ability of the flip-flop to toggle its state regardless of the present state,

the flip-flop complements its output when clock pulse occurs when in put T is 1.

The characteristic table and circuit diagram are illustrated in the figure below.

CHAPTER 6. REGISTER / COUNTERS & MEMORY 85

J

K

CLK

K

J

CLK

Master

Q

Slave

QM

Q

Q̄
Q̄M

QM

Figure 6.6: Implementation of Edge-triggered Master/Slave Logical Circuit of JK

Flip-Flop.

CHAPTER 6. REGISTER / COUNTERS & MEMORY 86

Q
T

CLK

Q̄

Figure 6.7: Basic logic circuit of Toggle

Flip-Flop .

T Q Q+ Q̄+

0 0 0 1

0 1 1 0

1 0 1 0

1 1 0 1

Table 6.2: Characteristic Table for T

Flip-Flop.

6.2.4 Master-Slave Flip-FLop

A master-slave flipflop is constructed from the two separate flip-flops. One circuit

serves as a master and other as slave, and the overall circuit is referred to as a

master-slave flip-flop. The logic diagram of an RS master-slave flip-flop is illustrated

in figure. When clock pulse is 0, the output of the inverter is 1. Since the clock

input of the slave is 1, the flip-flop is enabled and output Q is equal to Q̄. The

master flip-flop is disabled because clock pulse is 0. When the pulse becomes 1, the

information then at external R and S inputs is transmitted to master flip-flop. The

slave flip-flop however is isolated as long as the pulse is at its HIGH level, because

the output of the inverter is 0. When the pulse returns to 0, the master flip-flop

is isolated, which presents the external inputs from affecting it. The slave flip-flop

then goes to the same state as the master flip-flop.

The timing relationships in figure illustrate the sequence in which the events occur

in master slave flip-flop.

CHAPTER 6. REGISTER / COUNTERS & MEMORY 87

Name Characteristic State Diagram Excitation Table

Symbol Truth (Table) Characteristic equation

S

R

CLK

Q
S R

Q̄

S R Q Q+

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 x

1 1 1 x

SR=00 / 01

SR=00 / 10
SR=01

SR=10

$SR=0$

Q = 0 Q = 1

Q+ = S + R̄Q

Q Q+ S R

0 0 0 x

0 1 1 0

1 0 0 1

1 1 x 0

CLK

QJ

K

J K

Q̄

J K Q Q+

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

JK=00 / 01

JK=10 / 11

JK=00 / 10

JK=01 / 11

Q+ = K̄Q+ JQ̄

Q = 0 Q = 1

Q+ = J̄K̄Q+ JK̄ + JKQ̄

Q Q+ J K

0 0 0 x

0 1 1 x

1 0 x 1

1 1 x 0

CLK

Q

D

D

Q̄

D Q Q+

0 x 0

1 x 1 D=0

D=1

D=0

D=1

Q+ = D

Q = 1Q = 0

Q Q+ D

0 0 0

0 1 1

1 0 0

1 1 1

CLK

Q

T

T

Q̄

T Q Q+

0 0 0

0 1 1

1 0 1

1 1 0

T=1

T=1

T=0

T=0

Q = 0 Q = 1

Q+ = T Q̄+ T̄Q

Q Q+ T

0 0 0

0 1 1

1 0 1

1 1 0

Difference in design and behaviour of latches and flip-flops are tabulated below in

table 6.3:

6.3 Flip-Flop Applications

Flip-flops find applications in registers, frequency dividers , counters, these will be

discussed in detail in the subsequent chapters, however brief introduction is provided

here

CHAPTER 6. REGISTER / COUNTERS & MEMORY 88

Latches Flip-Flops

▼ Latch do not require clock signal. ▼ Flip-Flops require clock signal.

▼ Latch is an asynchronous device. ▼ Flip-flop is a synchronous device.

▼ Latches are transparent i.e. ▼ A transition of clock from low to

high

when they are enabled they change and vice versa cause flip-flop to

change

immediately when input changes. or retain the state depending on in-

put signal.

▼ Latch is a level sensitive device ▼ Flip-flop is an edge sensitive de-

vice

▼ Latches are simpler to design i.e. ▼ Compared to Latches Flip-Flops

are more

no routing of clock signal is re-

quired.

complex to design

▼ The power requirement of a latch

is less.

▼ Power requirement of a flip-flop is

higher.

▼ A latch works on the enable sig-

nal.

▼ A flip-flop works with the clock

signal.

Table 6.3: Comparison between design and operation of Latches and flip-flops.

CHAPTER 6. REGISTER / COUNTERS & MEMORY 89

CLR

CLR

C

D

R

D

C

R

R

D

C

D

C

1

1

0

0

CLK

D3

D2

Q0

Q1

Q2

Q3

D0

D2

D3

Q0

Q1

Q2

Q3

D0D1

D1

Figure 6.8: Application of Flip-Flops are Parallel Registers.

6.3.1 Parallel Data Storage

This is a very important requirement in a digital systems to store several bits of data

from parallel lines simultaneously in a group of flip-flops. Each of the four parallel

data lines is connected to the D input of a flip-flop. The clock inputs of the flip-flop

are connected together, so that each flip-flop is triggered by the same clock pulse.

CHAPTER 6. REGISTER / COUNTERS & MEMORY 90

Q

C
CLK

D Q

C
CLK

J

K

CLK

Q

HIGH

Q̄Q̄

Figure 6.9: Application of Flip-Flops to create a frequency divider circuit.

6.3.2 Frequency Division

Another important application of a flip-flop is dividing (reducing) the frequency of

periodic waveform. When a pulse waveform is applied tot he clock input of a D or

JK flip-flop that is connected to toggle (D = Q̄ or J = K = 1), the Q output is a

square wave with one-half the frequency of the clock input. Thus, a single flip-flop

can be applied as a divided-by-2 device as illustrated in figure 6.9 for both a D and

J-K flip-flop.

Further division of a clock frequency can be achieved by using the output of one flip-

flop as the clock input to a second flip-flop, as illustrated in figure 6.9. The frequency

of the QA output is divided by 2 by flip-flop B. The QB output is, therefore, one-

fourth the frequency of the original clock input. Propagation delay times are not

shown on the timing diagrams.

CHAPTER 6. REGISTER / COUNTERS & MEMORY 91

C
CLK

C

CLK

J

K K

J

0

0

1

0 1

0 1

1

0

0

1

0 1

0 1

1

High

QB

QA

QA

QB

Figure 6.10: Application of Flip-Flops to create a binary counter circuit.

6.3.3 Counting

Another important application of flip-flops is in digital counters. The concept is il-

lustrated in figure ??. Negative edge-triggered J-K flip-flops are used for illustration.

both flip-flops are initially RESET. The flip-flop A toggles on each negative going

transition of each clock pulse. The Q output of Flip-Flop Ac locks flip-flop B, so

each time QA makes a HIGH-to-LOW transition, flip-flop B toggles. The resulting

waveforms are illustrated in figure 6.10.

Chapter 7
Registers and Counters

Outline

The objective of this chapter is to review the design of digital circuits such

are shift registers, counters and their applications; with special emphasis on

the timing diagrams

A⃝ Shift Register Operation E⃝ Synchronous / Asynchronous Counters

B⃝ Bidirectional Shift Register F⃝ Up/Down Synchronous Counters

C⃝ Shift Register Applications G⃝ Counter Applications

D⃝ Finite State Machines H⃝

7.1 Shift Register Operations

Shift registers consist of arrangements of flip-flops and are important in applications

involving the storage and transfer of data in digital systems. A register has no spec-

ified sequence of states, except in certain very specialized applications. A register,

92

CHAPTER 7. REGISTERS AND COUNTERS 93

in general is used solely for storing and shifting data (1s and 0s) entered into it

from an external source and typically possesses no characteristic internal sequence

of states.

A register is digital circuit with two basic function; data storage and data move-

ment. This storage capability of a register makes it an important type of memory

device.

The storage capacity of a register is the total number of bits (1s and 0s) of a digital

data it can retain. Each stage (flip-flop) in a shift register represents one bit of

storage capacity; therefore, the number of stages in a register determines its storage

capacity.

Data in Data out Data inData out

Data in

Data out

Left to Right Shift Right to Left Shift Parallel in Serial out

Data in

Data out Data out

Data in

Serial in Parallel out Parallel in Parallel out Ring Shift Register

The shift capability of a register permits the movement of data from stage to stage

within the register or into or out of the register upon application of clock pulses the

types of data movement in shift registers. The block represents any arbitrary 4-bit

register, and the arrows indicate the direction of data movement.

CHAPTER 7. REGISTERS AND COUNTERS 94

CLR

CLR

C

D

R

D

C

R

R

D

C

D

C

1

1

0

0

CLK

D3

D2

Q0

Q1

Q2

Q3

D0

D2

D3

Q0

Q1

Q2

Q3

D0D1

D1

Figure 7.1: Basic data movement in shift registers.

CHAPTER 7. REGISTERS AND COUNTERS 95

Clk

D

C

FF0

D

C

D

C

D

C

FF1 FF2 FF3
Q0 Q1 Q2 Q3

Figure 7.2: Circuit Diagram of Serial in Serial Out Shift Register.

input

Clk

serial data
D

C

FF0

D

C

D

C

D

C

FF1 FF2 FF3

Q0 Q3Q2Q1

Figure 7.3: Circuit Diagram of Serial in Parallel Out Shift Register.

7.2 Types of Shift Register Data I/Os

There are four types of shift registers based on data input and output are considered;

serial in/serial out, serial in / parallel out, parallel in / serial out and parallel in /

parallel out.

7.2.1 Serial In / Serial Out Shift Registers

The serial in / serial out shift register accepts data serially - that is, one bit at a

time on a single line. It produces the stored information on its output also in serial

form.

7.2.2 Serial In / Parallel Out Shift Registers

Data bits are entered serially (least-significant bit first) into a serial in / parallel out

shift register in the same manner as in serial in / serial out registers. The difference

is the way in which the data bits are taken out of the register.

CHAPTER 7. REGISTERS AND COUNTERS 96

D

C

FF1

D

C

FF0

D

C

FF3

D

C

FF2

Clk

D0 D1 D2

Q0 Q1 Q2 Q3

D3

Figure 7.4: Circuit Diagram of Parallel in Serial Out Shift Register.

Clk

D

C

FF0

D

C

D

C

D

C

FF1 FF2 FF3

Q3Q2Q1Q0

D0 D1 D2 D3

Figure 7.5: Circuit Diagram of Parallel in Parallel Out Shift Register.

7.2.3 Parallel In / Serial Out Shift Registers

For a register with parallel data inputs, the bits are entered simultaneously into

their respective stages on parallel lines rather than on a bit-by-bit basis on one line

as with serial data inputs. The serial output is the same as in serial in/ serial out

shift registers, once the data are completely stored in the register. The Shift/Load

input allows for loading and/or shifting the bits.

7.2.4 Parallel In / Parallel Out Shift Registers

Immediately following the simultaneous entry of data and the bits will appear on

the parallel outputs.

7.3 Bi-Directional Shift Registers

A bi-directional shift register is one in which the data can be shifted either left or

right. It can be implemented using gating logic that enables transfer of a data bit

CHAPTER 7. REGISTERS AND COUNTERS 97

Clk

serial data
in

Right/Left

D

C

D

C

D

C

D

C

Q0 Q1 Q3Q2

Figure 7.6: Circuit Diagram of Bi-Directional Shift Registers.

(left) (left)

1

1

0

0 0
0 0

0
1

1 0 1

1

0

0

0

00

0

1
0

11

0

1

0

0

1 1 0 0
0

0 000

1

1

11

(right) (right)

CLK

1 1 0 1

0

0 0

1

1

0

0 1

R

R

L

L

1

1

1

1 1 0

0

0

1

0

0

Q0

Q3

Q2

Q1

Q0 Q1 Q2 Q3

Figure 7.7: Timing Diagrams of Bi-Directional Shift Registers.

from one stage to next stage to the right or to the left, depending on the level of

control line.

7.4 Shift Registers Counters

A shift register counter is basically a shift register with a serial output connected

back to the serial input to produce a special sequences. These devices are classified

as counters because they exhibit a specified sequence of states. Two of the most

common shift registers counters are Johnson counter and ring counter, described in

this section.

CHAPTER 7. REGISTERS AND COUNTERS 98

Clk

D

C

FF0

D

C

D

C

D

C

FF1 FF2 FF3
Q0 Q1 Q2 Q3

Figure 7.8: Circuit diagram of 4-bit Jhonson Counter.

Table 7.1: 4-bit Jhonson Sequence.

clk Q0 Q1 Q2 Q3

0 0 0 0 0

1 1 0 0 0

2 1 1 0 0

3 1 1 1 0

4 1 1 1 1

5 0 1 1 1

6 0 0 1 1

7 0 0 0 1

Johnson Counter

In a Johnson counter the complement of the output of the last flip-flop is connected

back to the D input of the first flip-flop (obviously it can be implemented with other

types of flip-flops as well). If the counter starts at 0, this feedback arrangement

produces a characteristic sequence of states as illustrated in table. Please note that

for n stages there are 2n number of counter stages.

Ring Counter

A ring counter utilizes one flip-flop for each state in its sequence. It has the advan-

tage that decoding gates are not required. In this case of 10-bit ring counter, there

CHAPTER 7. REGISTERS AND COUNTERS 99

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

D

C

Clk

Clr

Pre

Q4Q3Q2Q1Q0 Q5 Q6 Q7 Q8 Q9

Figure 7.9: Circuit Diagram of Jhonson Shift Register Counter.

Table 7.2: Output sequence of Ring Counter.

clk Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9

0 1 0 0 0 0 0 0 0 0 0

1 0 1 0 0 0 0 0 0 0 0

2 0 0 1 0 0 0 0 0 0 0

3 0 0 0 1 0 0 0 0 0 0

4 0 0 0 0 1 0 0 0 0 0

5 0 0 0 0 0 1 0 0 0 0

6 0 0 0 0 0 0 1 0 0 0

7 0 0 0 0 0 0 0 1 0 0

8 0 0 0 0 0 0 0 0 1 0

9 0 0 0 0 0 0 0 0 0 0

is a unique output for each decimal digit. The circuit diagram is illustrated in the

Fig. ??. The counter output sequence is illustrated in the table.

7.5 Shift Register Applications

Shift registers are found in many types of applications, a few of which are presented

here:

CHAPTER 7. REGISTERS AND COUNTERS 100

SRG8
Data in

CLK

1 MHZ

Data in

Data out

Data out

Q7

Q̄7

Figure 7.10: Shift Register as a delay Register.

Time Delay

A serial in/Serial out shift register can be used to provided a time delay from input

to output that is a function of both the number of stages n in the register and the

clock frequency. This time delay operation is illustrated in Fig. 7.10.

Serial-to-parallel Data Converter

Serial data transmission from one digital system to another is commonly used to

reduce the number of wires in the transmission line. For example, eight bits can be

sent serially over one wire, but it takes eight wires to send the same data in parallel.

Serial data transmission is widely used by peripherals to pass data back and forth to

a computer. For example, USB (universal serial bus) is used to connect keyboards,

printers, scanners and more to the computer. All computer process data in parallel

form, thus there is a requirement for serial-to-parallel conversion.

To illustrate the operation of this serial-to-parallel converter, the serial data format

shown in Fig. 7.11. It consists of 11 bits. The first bit (start bit) is always 0 and

always begins from HIGH-to-LOW transition. The next eight bits (D7 through D0)

are the data bits one of the bits can be for parity, and the last one or two bits (stop

bits) are always 1s. When no data are being sent there is a continuous HIGH on

the serial data line.

The HIGH-to-LOW transition of the start bit sets the control flip-flop, which enables

CHAPTER 7. REGISTERS AND COUNTERS 101

K

J
HIGH

Serial
Data in

C

Q

EN Q
CLK

CLK GENflip−flop
control

CTR DIV 8

C

TC

C

C

D

Q

LOAD

Data−input
register

SRG 8

SRG 8

register
Data−output

one−shot

CLR

bit(0)

Start Stop Stop

bit(1) bit(1)

TC·CLK

Q1 Q2 Q3 Q4 Q5 Q6 Q7Q0

D0 D1 D2 D3 D4 D5 D6 D7

D7 D6 D5 D4 D3 D2 D1 D0

Figure 7.11: Circuit Diagram for Conversion of Serial Data to Parallel.

the clock generator. After a fixed delay time, the clock generator begins producing

a pulse waveform, which is applied to the data-input register and to the divide-by-8

counter. The clock has a frequency precisely equal to that of the incoming serial

data, and the first clock pulse after the start bit occurs during the first data bit.

The timing diagram is illustrated in the figure. At the eighth clock pulse, the

terminal count (TC) goes from LOW to HIGH indicating that counter is at the last

state. The rising edge is ANDed with the clock pulse which is still HIGH, producing

a rising edge at TC· CLK. This parallel loads the eight data bits from the data input

shift register to the data-output register. A short time later the clock pulse goes

LOW and HIGH-to-LOW transition triggers the one-shot, which produces a short

pulse to clear the counter and rest control flip-flop and thus disable clock generator.

The system is ready for next 11 bits.

7.6 Finite State Machines

A state machine is a sequential circuit having limited (finite) number of states oc-

curing in a prescribed order. A counter is an example of state machine; the number

CHAPTER 7. REGISTERS AND COUNTERS 102

of states is called modulus. Two basic types of state machines are the Moore and

Mealy.

A Moore State Machine is one where outputs depend only on the internal present

state.
Note:In Moore machine

Output is dependant

on State.

Note!

A Mealy State Machine is one where outputs depend only on both the internal

present state and on the input.
Note:In Mealy machine

Output is dependent

on Transition.

Note!

Logic

Combinatorial
Memory Output

Logic

Combinatorial
Memory

Outputs

Present State

Input(s)

(a) Moore Finite State Machine (b) Mealy Finite State Machine

In Moore’s machine combinatorial logic gate array with outputs that determine the

next state of flip-flops in the memory. There may or may not be inputs to the

combinatorial logic.

7.7 Asynchronous Counters

The term asynchronous refers to events that do not have a fixed time relationship

with each other and, generally, do not occur at the same time. An asynchronous

counter is one in which the flip-flops within the counter do not change states at

exactly the same time because they do not have a common clock phase.

CHAPTER 7. REGISTERS AND COUNTERS 103

0¢

start

5¢

10¢

15¢

D′N ′

D

N

N

D′N ′

D D′N ′

N + D

1

A

0ć
B

5ć
D

10ć

C

15ć

Q/110

N/000

D/000

Q/101

Q/111

N/000

D/110

Q/111

N/000
D/100
Q/111

A 2-Bit Asynchronous Binary Counter

figure shows a 2 bit counter connected for asynchronous operation. Notice that

the clock is applied to the clock input (C) of only the first flip-flop FF0, which

is always the least significant bit (LSB). The second flip-flop, FF1 is triggered by

the Q̄0 output of FF0. FF0 changes state at the positive-going edge of each clock

pulse, but FF1 changes only when triggered by a positive-going transition of the Q̄0

output of FF0. Because of the inherent propagation delay time through a flip-flop,

a transition of the input clock pulse (CLK) and a transition of the Q̄0 output of

FF0 can never occur at exactly same time. Therefore, the two flip-flops are never

simultaneously triggered, so the counter operation is asynchronous.

7.8 Synchronous Counters

The synchronous counters refer to events that have a fixed time relationship with

each othe. A synchronous counter is one in which flip-flops in the counter are

CHAPTER 7. REGISTERS AND COUNTERS 104

C

FF0

Clk

C

FF1
Q1Q0D0

Q̄0 Q̄1

D1

CLK 3 41 2

Q0 (LSB)

Q1 (MSB)

Q̄0

Figure 7.12: Circuit diagram and Functional Block diagram of a Multiplexer.

C

FF0

Clk

C

FF1
Q1Q0D0

Q̄0 Q̄1

D1

CLK 3 41 2

Q0 (LSB)

Q1 (MSB)

Q̄0

Figure 7.13: Circuit diagram 2-bit Synchronous Counter with JK and D flipflop

implementations.

clocked at the same time by a common clock. D flip-flops can also be used but

generally this implementation requires more logic as it does not have a toggle or no-

change states. The basic structure of 2-bit synchronous counters with JK-flipflop or

D- flipflop are illustrated below

Assume, initially counter is zero ’0’ binary state, i.e. both flipflops are in reset

state. When positive edge of the first clock is applied, FF0 will toggle and Q0 will

go HIGH; however on FF1, at the positive edge of first clock inputs J1 and K1 would

still be LOW, which is a no change condition and therefore FF1 does not change at

first clock. One the second leading edge of the clock FF0 will toggle again and FF1

will set as HIGH.

Circuit diagram of 3 and 4 bit Synchronous counter are illustrated below

CHAPTER 7. REGISTERS AND COUNTERS 105

Insert the circuit diagram of 3 and 4 bit synchronous counters here.

7.9 Up/Down Synchronous Counters

An up/down counter is one that is capable of progressing in either direct through

a certain sequence. An up/down counter, sometimes called bi-directional counter,

can have a specified sequence of states.

Fig. shows a basic implementation of a 3-bit up/down binary counter. Notice that

control input is HIGH for UP and LOW for DOWN.

Insert the circuit diagram of 3 bit UP/Down counters here.

