
Sukkur Institute of Business Administration
University

Department of Electrical Engineering.

Optimization Techniques

course lecture notes

Instructor
Dr. Muhammad Asim Ali

Spring 2020

Contents

1 Introduction 1

1.1 Vectors Spaces and Subspaces 1

1.2 Vector SubSpaces . 2

1.3 Matrices . 3

1.4 Vector Span . 4

1.5 Linear Independence . 4

1.6 Space of a Matrix . 5

1.7 Rank of Matrix . 9

1.8 Graphical Visualization of Ax = b 10

1.9 Eigen-Values and Eigen-Vectors 13

1.10 Diagonalization of a Matrix 15

1.11 Singular Value Decomposition 16

2 Least Square Solution 21

2.1 Least Square Problem . 25

2.2 Weighted and Constrained Least Squares 28

2.3 Constrained Least Squares Problem 29

2.4 Least Mean Square Algorithm 35

2.5 Recursive Least Squares . 39

2.6 Langrange Multipliers Method 43

3 Linear Programming 56

3.1 Several Examples . 57

3.1.1 Feasible Set . 58

3.2 General Linear Programming Problem 63

3.3 Some More Examples . 64

3.3.1 Matrix Notation . 67

3.4 Duality . 73

3.4.1 Weak Duality Theorem . 76

3.4.2 Strong Duality Theorem . 77

3.5 Complementary Slackness Theorem 77

i

3.6 Simplex Algorithm . 79

3.6.1 Variants of Simplex Algorithm 85

3.6.2 The big-M Method . 86

3.6.3 Two Phase Method . 86

3.7 Karush-Kuhn-Tucker Conditions 87

3.8 Interior Point Method . 90

4 NonLinear Programming Techniques 95

4.1 Integer Programming . 95

4.2 Quadratic Programming . 96

4.3 Geometric Programming . 97

4.4 Cone Programming . 99

4.5 Semi-definite Programming 100

5 Introduction to Convex Optimization 106

5.1 Convex function . 106

5.1.1 Affine Sets . 107

5.1.2 Epigraph . 109

5.2 Operations that preserve convexity 109

6 Optimization Algorithms 112

6.1 Particle Swarm Optimization 112

6.2 Genetic Algorithm . 112

6.3 Ant Colony Optimization 113

ii

Introduction

Optimization techniques find application in every facet of modern human life. From

design to manufacturing and operation. It find application in a set of diverse fields

ranging from agriculture, medicine, industry, transportation, stock markets , eco-

nomics and now more recently to different applications of electrical engineering

including signal processing.

Although optimization has been around since long time however Dantzig in 1947 pro-

posed the first algorithm which automized the optimization problem. This algorithm

popularly known as the “Simplex Algorithm”. The specific field of optimization in

known as Linear Programming.

The theory of optimization has evolved exponentially over the past century (for ob-

vious economic implications) and has matured to become a technology.

As the literature on this theory points out the real problem in optimization is actu-

ally to decided whether a problem is optimizeable and how to formulate it mathe-

matically so that it can be optimized easily.

iii

Chapter 1
Introduction

Outline

The objective of this chapter is to familiarize the students with the funda-

mental concepts of mechanics which will form basis of pivotal concepts of

Robotics. The topics included here are

A© Introduction D© The 4 Spaces

B© Vectors and Vector Spaces E© Rank and its implications.

C© Independence, Basis F© Matrix Decomposition

1.1 Vectors Spaces and Subspaces

Definition: The space R
n consists of all column vectors v with n compo-

nents.

The components of v are real numbers, which is the reason for the letter ℜ. A vector

whose n components are complex numbers lines in space C.

The vector space R
2 is represented by the usual xy plane. Each vector v in R

2 has

two components. The word space ’asks’ us to think all possible vectors available in

the plane. Each vector has x and y coordinates of a point in the plane. Similarly

the vectors in R
3 correspond to points (x, y, z) in three dimensional space. The

1

one-dimensional space R
1 is a line (like x-axis). General vectors can be represented

in a variety of notations.








4

0

1








∈ R
3 (1, 0, 1, 1, 0) is ∈ R

5




1 + i

1 − i



 ∈ C
2

1.2 Vector SubSpaces

Vector R
n is a set of all vectors such that








x1

...

xn








wherexi ∈ R
n, 1 ≤ i ≤ n

V is a linear subspace (subset) of Rn if following conditions are met include

• The subspace should include the all zero vector 0.

• If v is in a vector space then for any scalar c ∈ R cv is also in the vector space.

• If v and w are two vectors in a vector space than their sum i.e. v + w is also

in a vector space.

Some Examples

2

S1 =

{








x1

x2

x3








∈ R
3

}

.

S2 =

{








x1

x2

x3








∈ R
3|x1 > 0

}

.

S3 =

{








x1

x2

x3








∈ R
3|x1 − 4x2 + 5x3 = 2

}

.

S4 =

{








x

y

z








∈ R
3|y > x2

}

.

S5 =

{








x

y

z








∈ R
3|3x = 2y

}

.

1.3 Matrices

Matrix simply speaking is an arrangement (array) of real and/or complex numbers.

Matrix is a set of column vectors in R
m if we have n-columns then the dimension of

matrix is m × n.

Matrix can be used to describe and solve a plenty of problems, a set of linear equation

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

... =
...

am1x1 + am2x2 + · · · + amnxn = bm

could be translated into a matrix form











a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

am1 am2 · · · amn











·











x1

x2

...

xn











=











b1

b2

...

bm











3

transformation of vectors can be performed through matrix operation








1 0 0

0 1 0

0 0 1















0 0 1

0 1 0

1 0 0











cos θ − sin θ

sin θ cos θ





use of matrix as a convolution operation











y[0]

y[1]
...

y[n − 1]











=















h[0] 0 0 · · · · · · 0

h[1] h[0] 0 · · · · · · 0

h[2] h[1]
. . . · · · · · · 0

...
. · · · h[0] 0

...
. h[2] h[1] h[0]

























x[0]

x[1]
...

x[n − 1]











1.4 Vector Span

Span of a vector subspace v is a set of all linear combinations x = c1v1 + c2v2 +

· · · + cnvn, Formally speaking

span(v1, v2, · · · , vn) =

{

c1v1 + c2v2 + · · · + cnvn|ci ∈ R for 1 ≤ i ≤ n

}

1.5 Linear Independence

We have v1, · · · , vn ∈ R
n, a linear combination c1v1 + c2v2 + · · · + cnvn with ci ∈ R,

for a set of vectors A =
[

a1 a2 · · · an

]

, column space is just the span of vectors

a1, a2, · · · , an. If a set of vectors is linearly independent then it forms a basis for

column space of A.

Likewise A =
[

a1 a2 · · · an

]

a set of vectors is called linearly dependent if and

only if the vector equation c1v1 + c2v2 + · · · + cnvn = 0 has a solution with at least

ci = 0.

Basis

A basis for a vector space is a sequence of vectors which are linearly independent and

spans the space. The representation of any vector as combination of basis vectors is

4

unique.

The columns of I =




1 0

0 1



 produce the ’standard basis’ for R
2.

The basis is not unique!

Row Reduced Echelon Form

It is well known fact that operations on the rows of a matrix do not affect the matrix.

Through systematic manipulation of the rows of a matrix A.

R=rref(A) of a matrix is unique. ⇒ RT 6= rref(AT).

How to obtain the original matrix A from R? There exists a set of linear operations

such that EA = R, therefore A = E−1R. The firstr columns of E−1 are pivot rows

of A.








1 0 2

2 1 4

1 1 2








⇒








1 0 2

0 1 0

0 0 0








What can we say about the dependence of column space?

1.6 Space of a Matrix

These are some the very important properties of the matrix which provide a very

deep insight into the

Column Space of a matrix A i.e. C(A) contains all linear combinations of columns

of A. This combination includes Ax. For a linear system Ax = b to have a solution

x, b must be in column space of A.

5

2x + 3y = 6 2x + 3y = 6

4x − 6y = 12 4x − 6y = 12

which is which is



2 3

4 −6








x

y



 =




6

12








2 3

4 6








x

y



 =




2

6





Does b lie in the column space of A? Does b lie in the column space of A?

6

If a matrix has dimensions m × n then each column has m components thus

belongs to R
m. Thus the column space C(A) is a R

m dimensional subspace.




1 0

0 1








1 2

2 4








0 1

1 0





Null Space of a matrix A i.e. N(A) consists of all the solutions of Ax = 0. For a

m × n matrix A the N(A) is in R
n dimensional subspace.

A =




1 2 2 4

3 8 6 16



 ⇒ rref(A) =




1© 0 2 0

0 1© 0 2





This simplification implies that x1 and x2 are pivot variables while x3 and x4

are free variables. Now solving




1© 0 2 0

0 1© 0 2



 ·











x1

x2

x

y











=











0

0

0

0











which yields into following equalities

x1 = −2x x2 = −2y

letting x = 1 and y = 0, x =
[

−2 0 1 0
]T

or equivalently x = 0 and y = 1 ,

x =
[

0 −2 0 1
]T

.

just do a quick check to see if indeed Ax = 0.

Row Space of a matrix is a subspace in R
n spanned by rows. The row space of A

is C(AT). → It is column space of AT .

7

Left Null Space We solve AT y = 0. The vector y goes on to the left side of

A when the equation is written as yT A = 0T . Matrices A and AT are different;

therefore their column spaces and null spaces are also different.

The Four Spaces

For a Full rank matrix A with dimensions m × n.

1. The column space is C(A), a subspace of Rm.

2. The Null space is N(A), a subspace of Rn.

3. The row space is C(AT), a subspace of Rn.

4. The Left Null space is C(AT), a subspace of Rm.

consider the following matrices

A =








1 4

2 7

3 5








and AT =




1 2 3

4 7 5



 with m = 3 and n = 2. What is the column

and row space of A. The row space is all of R2.

The row space C(AT) and column space C(A) have same dimensions as the

rank r. The Null space N(A) and the left null space N(AT) have dimensions

n − r and m − r to make up full n and m.

Example:

For some Matrix A it RREF isR =








1© 3 5 0 7

0 0 0 1© 2

0 0 0 0 0








Row space has dimension 2 (i.e. Rank), the first and fourth rows are the basis

of Row space. Column space has dimension 2 as all columns can be obtained

through linear combination of column 1 and 4. Null space has dimension n − r

i.e. 5 − 2 = 3, there are 3 free variables. Left Null space has dimension m − r

i.e. 3 − 2 = 1

8

Null Space

dim r

dim n−r

Column Space

Left Null Space

dim m−r

The Big Picture

dim r

Row Space
C(AT)

Ax = 0

all of ATy

N(AT)

C(A)

Rm

N(A)

Rn

all of ATy
all of Ax

Figure 1.1: An illustration of relation between spaces span by columns and rows.

1.7 Rank of Matrix

For a set of m linear equations with n unknowns, the set of possible solutions de-

pends on the rank of the matrix.

r = m and r = n Square and Invertible Ax = b has one solution

r = m and r < n Short and wide Ax = b has ∞ solutions

r < m and r = n Tall and thin Ax = b has one or zero solution

r < m and r < n Not Full rank Ax = b has zero or ∞ solution

The rref(A)=R will fall in the same category as the pivot columns happens first.

Four Types R =
[

I
] [

I F
]




I

0








I F

0 0





Case 1 and 2 have full rank r = m, case 1 and 3 have full rank r = n. Case 4 is the

most general in theory and least common in practice.

9

1.8 Graphical Visualization of Ax = b

Ax = b

• A[m×n] can be square, tall (over determined) or fat (under-determined).

• Either rank[A]=rank[A|b] (consistent)

rank[A]6= rank[A|b] (inconsistent)

• Either A is Full rank (i.e. rank[A]=min(m,n))

rank deficient (i.e. rank[A]< min(m,n))

• Looks like there are 12 possibilities but only 10 can exist.

A- Full Rank A- Not Full Rank

A- Square (consistent) One Sol. Infinite Sol.

A- Square (inconsistent) Can’t Happen Infinite LS Sol.

A- Tall (consistent) One Sol. Infinite Sol.

A- Tall (inconsistent) One LS Sol. Infinite LS Sol.

A- Fat (consistent) Infinite Sol Infinite Sol.

A- Fat (inconsistent) Can’t Happen Infinite LS Sol.

10

Square Matrix

Ax = b consistent Ax 6= b inconsistent

Rank(A|b)=Rank(A) Rank(A|b)6=Rank(A)

m = n m = n

rank(A)=r=m=n (full rank) rank(A)=r< m=n (full rank)

Full Rank

x3

x1

x2

x1

x2

x1

x2

x3

x1

x2

x3

x2

x1

rank(A)=r< m=n (Not full rank)

Infinite
solutions

x1

x2

x3

x1

x2

11

Tall Matrix

Ax = b consistent Ax 6= b inconsistent

Rank(A|b)=Rank(A) Rank(A|b)6=Rank(A)

m > n m > n

rank(A)=r=n< m (full rank) rank(A)=r=n< m (full rank)

Full Rank

x3

x1

x2

x1

x2

x1

x2

x1

x2

Rank(A)=r< n< m Rank(A)=r< n< m

(Not Full Rank) (Not Full Rank)

Square

3 lines

x1

x2

x2

x1

x3

Infinite
solutions

x1

x2

x2

x1

x3

12

Fat Matrix

Ax = b consistent Ax 6= b inconsistent

Rank(A|b)=Rank(A) Rank(A|b)6=Rank(A)

m < n m < n

rank(A)=r=n< m (full rank) rank(A) = r < n < m (Not full rank)

Rank(A) = r < n < m Rank(A) = r < n < m

(Not Full Rank) (Not Full Rank)

Infinite
solutions

x2

x1

x3

x1

x2

Infinite
solutions

x1

x2

x3

Rank(A) = r < n < m

x2

x1

x3

1.9 Eigen-Values and Eigen-Vectors

Thus far we have been concerned with Ax = b, now we concern ourselves with

Ax = λx.

x2

x1

x2

x1

x

Ax

Ax = λx

13

In this particular case all the set of vectors x which when multiplied with a matrix

A yield λx. where λ is an eigen-value. The eigenvalues of can be computed as

det(A − λI) = 0 (1.1)

(1.1) is known as the ’characteristic polynomial’ of the matrix A. If this polynomial

has a non-zero solution, A − λI is non-invertible. The determinant of A − λI must

be equal to zero. This is how we recognize an eigen-value λ.

The characteristic polynomial det(A − λI) involves only λ and not x. When A is

n × n, the polynomial has degree n. For each Eigen-value λ solve (A − λI)x = 0 or

equivalently Ax = λx to find an eigen-vector x. The eigen-vectors essentially make

up the null space of A − λI.

Example: Consider A =




1 2

2 4



 is an already singular (zero-determinant). Find

it’s λ’s and x’s.

Subtract λ from the diagonal to find A − λI =




1 − λ 2

2 4 − λ



 i.e. (λ2 − 5 − λ) = 0

which leads to two solutions i.e. λ = 0, 5.

(A − 0I)x =




1 2

2 4








y

z



 =




0

0



 yields into eigen-vector




y

z



 =




2

−1



 for λ1 = 0.

(A − 5I)x =




−4 2

2 −1








y

z



 =




0

0



 yields into eigen-vector




y

z



 =




1

2



 for λ2 = 5.

Eigen-values fill up the null-space Ax = 0. If A is invertible, 0 is not an eigen-

value, A is shifted by multiple of I to make it singular.

Compute the determinant of A − λI, with λ subtracted along the diagonal, the

determinant starts with with λn or −λn. It is polynomial in degree n.

Find the roots of this polynomial by solving det(A − λI) = 0. The n−roots are

the n− eigen-values of A. They make A − λI singular.

For each eigen-value λ, solve (A − λI)x = 0 to find eigen-vector x.

The eigen-values of Ak for any positive integer k are λk
1, · · · , λk

n.

A matrix A is invertible if every eigen-value is non-zero.

If matrix A is invertible then its eigen-values are
1

λ1

, · · · ,
1

λn

.

14

For an n×n matrix without a set of n independent eigen-vectors it is not possible

to have basis.

other important properties to note:

λ1 + λ2 + · · · + λn = trace = a11 + a22 + · · · + ann

det(A) =
n∏

i=1

λi = λ1 · · · λn

Some more facts

1. Shuffling the rows of a matrix would change the Eigen-values.

2. The product of n−eigenvalues equals the determinant.

3. The sum of n−eigenvalues equals the sum of n diagonal entreies.

4. The sum of the main diagonal is called the trace of a matrix.

5. The eigen-values of A2 and A−1 are λ2 and λ−1 with same eigen-vectors.

1.10 Diagonalization of a Matrix

The combination of eigen-values and eigen-vectors can be expressed in a matrix

notation as AX = XΛ, where X is the set of eigen-vectors and Λ is diagonal matrix

with eigen-values λ on the diagonal.

AX = A







x1 · · · xn








=







λ1x1 · · · λnxn














λ1x1 · · · λnxn














x1 · · · xn











λ1

. . . λn



 = XΛ

If an n × n matrix A has n−linearly independent eigen-vectors x1,x2,· · · , xn, put

them on the columns of an eigen-vector matrix X. Then X−1AX is an eigen-value

matrix Λ.

15

AX = XΛ is X−1AX or A = XΛX−1

The important application of this feature:

Ak = (XΛX−1)(XΛX−1) · · · (XΛX−1)

= (XΛkX−1)

Suppose if the eigen-vector matrix Λ is fixed and we can change the eigen vector

matrix X we get a whole family of XΛX−1 all with same eigen-values Λ. All those

matrices with same Λ are called Similar.

A matrix is said to be a Symmetric Matrix if it has n real valued eigen-values λi

and n−orthonormal eigen-vectors q1,q2,· · · ,qn.

Every real symmetric matrix S can be diagonalized as S = QΛQ−1 = QΛQT .

Every matrix is said to be positive semi-definite matrix if for any non-zero vector x

the product xT Ax ≥ 0.

• if all the columns of a matrix are independent the matrix is positive semi-

definite.

• for a semi-definite matrix all eigen-values are positive.

1.11 Singular Value Decomposition

Singular Value Decomposition is one of the most significant milestones in linear

algebra. A is a m × n matrix square or rectangular. Its rank is r. It is possible to

diagonalize A but not as SΛS−1. The eigen-vectors in S are not always orthogonal,

there are not always enough eigen-vectors. Ax = λx requires A to be a square

matrix. The singular vector of A solve all those problems in a perfect way.

The price of this is that we have to calculate a set of two singular vectors u’s and

v’s. The u’s are eigen-vectors of AAT and the v’s are the eigen-vectors of AT A.

Since both those matrices are symmetric, there eigen-vectors can be chosen to be

orthonormal.

Fundamental Concept

16

A =

















1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

1 1 1 1 1 1

















is same as

















1

1

1

1

1

1

















[

1 1 1 1 1 1
]

A =

















a a c c e e

a a c c e e

a a c c e e

a a c c e e

a a c c e e

a a c c e e

















is same as

















1

1

1

1

1

1

















[

a a c c e e
]

A is diagonalized Av1 = σ1u1 Av2 = σ2u2 · · · Avr = σrur

The eigen-vectors v1, v2 · · · vr are in the row space of A. The vectors u1, u2 · · · ur

are in the column space of A. The singular σ1, σ2, ·, σr are all positive numbers.

When v’s and u’s go into the columns of U and V, we have VT V = I and UT U = I.

The σ’s can go into the diagonal matrix Σ.

So just as Axi = λixi led to the diagonalization of AS = SΛ, the equations Avi =

σiui can be expressed in the matrix notation as AV = UΣ.





A





m×n







v1 · · · vr








n×r

=







u1 · · · ur








m×r








σ1

. . .

σr








r×r

In short-hand notation

A = UΣVT = u1σ1v
T
1 + · · · + urσrv

T
r

which is equal to splitting the matrix A into r matrices of rank 1.

The v’s and u’s account for the row space and the column space of A, we need n−r

more v’s and m − r u’s from N(A) and N(AT). They can be orthonormal bases

for those two null spaces and automatically orthogonal to the first r v’s and u’s.

17

Rotate StrechX RotateX

v1

v2

V

σ2

σ2

σ2u2

σ1u1

UΣVT

A

dim r

dim n−r

dim r

dim m−r

ur−1

ur

u1

vr−1

v1

vr

vn−1

vn

Rn

vr+1

N(A)

Rm

ur+1

um

um−1

C(A)

C(AT)

[

U1(m×r) U2(m×(m−r))

]

[

Dr×r 0r×n−r

0(m−r)×r 0(m−r)×(n−r)

]

[

VT
1(r×n)

VT
2(n−r)×n

]

N(AT)

Am×n = Um×mΣm×nV
T
n×n

Combine all those u’s and v’s in V and U now those matrices become square. We

still have the AV = UΣ.

18





A





m×n

V





v1 · · · vr vr+1 · · · vn








n×n

=

U





u1 · · · ur ur+1 · · · um








m×m

Σ










σ1

. . .

σr











m×n

where Σ is a m × n matrix with m − r new zero rows and n − r new zero columns.

The dimensions of U and V and Σ have changed and VT V = In and UT U = Im.

V is now an orthogonal square matrix with inverse V−1 = VT . So AV = UΣ.

When UΣVT (singular values) are the same as SΛS−1 (eigen-values)?

We need orthogonal eigen-vectors in S = U we need non-negative eigen-values

Λ = Σ. So A must be a positive semi-definite (or definite) symmetric matrix

QΛST .

Applications of SVD

Image Compression Reduction of Dimension Feature Extraction

How to Calculate SVD

AT A = (UΣVT)T (UΣVT) AAT = (UΣVT)(UΣVT)T

=VΣUT UΣVT = UΣVT VΣUT

=VΣ
2VT = UΣ

2UT

AT AV = VΣ
2 AAT U = UΣ

2

19

Application of SVD

1 Singular Value 5 Singular Values 10 Singular Values

25 Singular Values 50 Singular Values Orginal Image

20

Chapter 2
Least Square Solution

Outline

The objective of this chapter is to study a fundamental set of un-constrained

optimization techniques. We also study some of the well-known adaptive

algorithms used to solve such problems online. The fundamental concepts

covered in this chapter are

A© Least Square Solution C© LMS Algorithm

B© Weighted Least Squares D© RLS Algorithm

C© Constrained Least Squares G© Lagrange Multipliers

This is an all too familiar problem

Predicted
Value

actual
Value

Value
Stock

y(t)

ti−3 ti−2 titi−4ti−5

e(tN)

y = mt+ c

tN
t

21

the statisticians know this as a linear regression problem for engineers this is curve

fitting i.e. to find a function that ‘best’ fits to the data i.e. find the values of m and

c to minimize J =
N∑

i=1

e2(ti). This problem can be reformulated in terms of linear

algebra as











t1 1

t2 1
...

...

tN 1














m

c



 =











y1

y2
...

yN











and in general form as polynomial

y(t) = a0 + a1t + a2t
2 + · · · + amtm

e(ti) = y(ti) − yi

y(t)

ti−3 ti−2 titi−4ti−5

e(tN)

tN
t











e(t1)

e(t2)

· · ·
e(tN)











=











1 t1 · · · tm
1

1 t1 · · · tm
1

...
... · · · ...

1 tN · · · tm
N





















a0

a1

...

am











−











y1

y2

· · ·
yN











22

Traditional Least Squares

Ax = b + e








a11 a12

a21 a22

a31 a32











x1

x2



 =








b1

b2

b3








+








e1

e2

e3








y(t)

tti−3 ti−2 ti−1 titi−4ti−5

Choose the xLS that satisfies (A)x = b + e but requires the smallest ‖e‖2
2 =

m∑

i=1

e2
i .

23

Data Least Squares

Ax + E = b















a11 a12

a21 a22

a31 a32








+








e11 e12

e21 e22

e31 e32


















x1

x2



 =








b1

b2

b3








y(t)

tti−3 ti−2 ti−1 titi−4ti−5

Choose the xDLS that satisfies (A + E)x = b but requires the smallest ‖E‖2
F =

m∑

i=1

m∑

j=1

e2
ij.

24

Total Least Squares

Ax + E = b + e















a11 a12

a21 a22

a31 a32








+








e11 e12

e21 e22

e31 e32


















x1

x2



 =








b1

b2

b3








+








e1

e2

e3








y(t)

tti−3 ti−2 ti−1 titi−4ti−5

Choose the xT LS that satisfies (A + E)x = b but requires the smallest ‖E‖2
F +

‖e‖2
2.

2.1 Least Square Problem

In practice it often happens that solution to a set of linear equations is not possible.

The usual reason for this problem is too many equations. There are more equations

than unknowns, unless readings are perfect, b is outside the column space of A.

This is typically due to noisy measurements. i.e.

Ax = b + e

Lets consider an example

y = 2x − 2

y = 0.5x + 1

y = −x + 10

25

The plot clearly illustrates that there is no unique solution to this problem

y = 2x − 2 + e1

y = 0.5x + 1 + e2

y = −x − 10 + e3

Add e1, e2 and e3 such that there exist an (x, y) that satisfies all three equations.

There are infinitely many possibilities but optimal solution is such that
3∑

i=1

e2
i is

minimized.

(a)

(b)

(c)

26

The cost function looks like

J =
3∑

i=1

e2
i = (y − 2x + 2)2 + (y − 0.5x − 1)2 + (y + x − 10)2

∂J

∂x
= 0 ⇒ −1.5y + 5.25x = 13.5

∂J

∂y
= 0 ⇒ 3y − 1.5x = 9

Solving we get the LEAST-SQUARE solutions as (x, y)LS = (4, 5).

J(x) = ‖e‖2 = (b − Ax)T (b − Ax) = xT AT Ax − xT AT b − bT Ax + bT b

⇒ ∂J(x)

∂x
= 2AT Ax − AT b − AT b + 0 = 0

⇒ ∂J(x)

∂x
= 2AT Ax − 2AT b + 0 = 0

⇒ AT Ax = AT b

⇒ x =

(

AT A

)−1

AT b

C(A)

b⊥

b‖

Ax

Ax = b = b‖ + b⊥

We further note that

AT b⊥ =







a1 · · · an















b1⊥

...

bn⊥








=








< a1 · b⊥ >
...

< an · b⊥ >








= 0

27

Thus

AT Ax = AT (b‖ + b⊥) = AT b

AT Ax = AT b

Properties of Quadratic Performance Surface

x1LS

J(x)

x2

x1

x2LS

λ
max

λ
min

= 10

x1LS x1

x2LS

J(min)

J(x)

x2
λ
max

λ
min

= 20

J(x)

x1

x2

λ
max

λ
min

= ∞

J(x) = ‖b − Ax‖2 = xT AT Ax − 2bT Ax + bT b

Now consider the eigen-values {λi}n
i=1 :

(

AAT
)

vi = λivi with i = 1, 2, · · · , n.

2.2 Weighted and Constrained Least Squares

It is quite possible that some readings will be in error (called outliers).

outlier

y(t)

ti−3 ti−2 titi−4ti−5

y = mt+ c

tN
t

e(ti) = y(ti) − yi i = 1, 2, . . . , N

28

Weighting each error term

J = eT











w1

w2

. . .

wn











e =
n∑

i=1

wie
2(t1)

Choice of weights could depend on the application, a typical choice could be σ2
i =

E{e2(ti)}. Assuming errors are zero mean with variance σ2
i = E{e2(ti)} so intu-

itively J =
n∑

i=1

wie
2(ti) =

N∑

i=1

(1

σ2
i

)

e2(ti).

Ax = b − e =











e1

e2

...

en











= J = eT















1

σ2
1

1

σ2
2

. . .
1

σ2
n















e =
n∑

i=1

(1

σ2
i

)

e2(ti)

this implies

xWLS = arg min
x

‖b − Ax‖2
W =

(

AT WA

)−1

AT Wb

2.3 Constrained Least Squares Problem

The cases often spring up in practice when solution to a set of equations must

satisfy certain constraints for example the profit or revenue can not be negative,

cut-off frequency of a filter should be less than a specified value. The constraints

can be classified into two types generally:

• Linear Constraints.

• Quadratic Constraints.

xcon = arg min
x

‖b − Ax‖2 subject to cT x = q

xcon = arg min
x

‖b − Ax‖2 subject to xT Cx = q

29

Linear Constraints

x1

x2

J(x)

J(x

on

)

cTx = q

J(‖x −Ax‖2)

x

on

x
LS

J
min

=J(xLS)

The cost function

J(x) = ‖b − Ax‖2 = ‖A(x − xLS)‖2 + bT P⊥
Ab

Doing a derivative in the presence of constraints

J(x) = xT AT Ax − 2xT AT AxLS + xT
LSAT AxLS + bT P⊥

Ab + λ(cT x − q)

∂J

∂x
= 2AT Ax − 2xT AT AxLS + λc = 0

x = xLS − 0.5
(

AT A
)−1

λc

∂J

∂λ
= cT x − q = 0

λ =
2cT xLS − 2q

cT
(

AT A
)−1

c

xcon = xLS −
(

AT A
)−1

c

[

cT xLS − q

cT
(

AT A
)−1

c

]

where xLS =
(

AT A
)−1

AT b and P⊥
A = I − A

(

AT A
)−1

AT .

30

Example

Consider a linear system

A =








−1 1

−0.5 1

1 1








, b =








1

1

2








, c =




1

1



 , q = −2. The system Ax = b with ’fuzzy

constraints’ cT ⇒











−1 1

−0.5 1

1 1

1 1














x1

x2



 =











1

1

2

−2











.

x2

x

on

x
LS

x1

cTx = q

xwls = arg min
x

‖b̃ − Ãx‖2
w =

(

ÃT WÃ

)−1

ÃT Wb̃

where W =











1

1

1

w











.

xwls = arg min
x

‖b̃ − Ãx‖2
w =

(

ÃT WÃ

)−1

ÃT Wb̃, W =











1

1

1

w











31

w = 0 xW LS = [0.5358 1.4231]T

w = 1 xW LS = [−0.5358 0.5686]T

w = 2 xW LS = [−1.2222 0.0397]T

w = 3 xW LS = [−1.4502 − 0.1394]T

w = 5 xW LS = [−1.5914 − 0.2054]T

w = 10 xW LS = [−1.6572 − 0.3021]T

w = 100 xW LS = [−1.6798 − 0.3198]T

w = 1000 xW LS = [−1.6800 − 0.3200]T

x
LS

cTx = q

x2

xLS=[0.5385, 1.4231]T

x1
xCON=[−1.68,−0.32]T

Quadratic Constraints

x2

x1

x2

x1

J(xcon)

xLS

xcon

J(xLS)

xTCx = q
x1

x2

xLS

J(xLS)

J(xLS)=‖b−Ax‖2

J1(x) = xT
(

AT A
)

x − λ
(

xT Cx − q
)

Constraint

⇒ ∂J1(x)

∂x
= 2

(

AT A
)

x − 2λCx = 0

⇒
(

AT A
)

xi = λiCxi i = 1, 2, · · · , n

So by choosing xi and corresponding λi we are trying to minimize

J(xi) = xT
i

(

AT A
)

xi

λiCxi

= λix
T
i Cxi = λiq

(

since xT Cx = q

)

(2.1)

32

xcon = xmin corresponding to λmin = min
i

{λi}n
i=1 ⇒ J(xcon) = qλmin

Deterministic Least Squares

For Ax = b − e choose x̂ to minimize J(x) = ‖e‖2 =
n∑

k=1

|ek|2

Stochastic Least Mean Squares

For y = Ax choose x̂ to minimize

E

{

(x − x̂)(x − x̂)T

}

Quadratic Objective Functions

Deterministic Least Squares

ek = dk − yk

yk = xT
k w = WT xk

|ek|2 = d2
k + wT xkxT

k w − 2dkxT
k w

Stochastic Least Mean Squares

wLwL−1w1w0
dk

yk

x0k x1k x(L−1)k

ek

xLk

J(w) = E
{

|ek|2
}

= E
{

d2
k

}

+ wT E
{

xT
k xk

}

︸ ︷︷ ︸

Rxx

w − 2E
{

dkxT
k

}

︸ ︷︷ ︸

Pdx

= E
{

d2
k

}

+ wT Rxxw − 2PT
dxw

33

Where

Rxx = E{xkxT
k } = E

{











x2
0k x0kx1k · · · x0kxLk

x1kx0k x2
1k · · · x1kxLk

...
... · · ·

xLkx0k xLkx1k · · · x2
Lk











}

Pdx = E{dkxk} = E

{











dkx0k

dkx1k

...

dkxLk











}

where E{xikxjk} =
1

N

N∑

k=1

xikxjk and E{dkxjk} =
1

N

N∑

k=1

dkxjk.

J(w) = E{d2
k} + wT Rxxw − 2PT

dxw

The optimal coefficients can be obtained through derivation of the cost function

∂J

∂w
=


















∂J

∂w0

∂J

∂w1
...

∂J

∂wL


















= 2Rxxw − 2Pdx = 0

wopt = R−1
xx Pdx

34

Applications of Weiner Filter

Uknown
System

h[n]
x[n] e[n]y[n]

d[n]

y1[n]

h[n]
y[n]

d[n]

h1[n]
y1[n] e[n]x[n]

System Identification Channel Equalization

h[n]
x[n]

d[n]

e[n]y[n]

s[n] + w[n]

w′[n]

Noise Cancellation

The problems with Least Mean Square (Wiener Solution)

• The estimates of Rxx and Pdx.

• The statistical properties may change from time to time.

• Recalculation is computationally complex.

The most straight forward solution to this problem is the Least Mean Square Algo-

rithm.

2.4 Least Mean Square Algorithm

Coefficients
P+1 filter

e(n)x(n)
{hn(l)}Pl=0

d(n)

35

• for n = 0, 1, 2, · · · evaluate
{

hn(l)
}P

l=0
. Compute

y(n) =
P∑

l=0

hn(l)x(n − l), n = 0, 1, 2, · · ·

e(n) = d(n) − y(n)

• Choose
{

hn(l)
}P

l=0
to minimize J(n) = E

{

e2(n)
}

.

We defined

x(n) =
[

x(n) x(n − 1) · · · x(n − P)
]T

h(n) =
[

hn(0) hn(1) · · · hn(P)
]T

y(n) = hT (n)x(n)

J(n) = E

{

e2(n)

}

The stochastic least mean square solution of this problem would be

J(n) = E
{

e2(n)
}

= E

{
(

d(n) − hT x
)T(

d(n) − hT x
)
}

= σ2 − 2hT (n)E
{

d(n)x(n)
}

︸ ︷︷ ︸

p(n)

+ hT (n)E
{

x(n)xT (n)
}

︸ ︷︷ ︸

Rxx(n)

h(n)

= σ2
d − 2hT (n)p(n) + hT (n)Rxx(n)h(n)

setting the derivative of this equation to ‘zero’ yields.

∂J(n)

∂h
= 2Rxx(n)h(n) − 2p(n) = 0 Wiener-Hopf Eqns

⇒ hopt(n) = R−1
xx (n)p(n)

Computation of exact correlation matrix is hard to calculate and in some cases it

may not be possible therefore

ĥopt(n) = R̂−1
xx (n)p̂(n)

The steepest descent avoids matrix inverses

ĥopt(n + 1) = ĥopt(n) − µ
∂J(n)

∂h
= ĥopt(n) − 2µ

[

Rxx(n)ĥopt(n) − p(n)
]

36

This expression still requires estimates of Rxx(n) and still computationally complex

ĥopt(n + 1) = ĥopt(n) − µ
∂J(n)

∂h
= ĥopt(n) − 2µ

[

R̂xx(n)ĥopt(n) − p̂(n)
]

The solution to this problem is LMS-stochastic gradient approach

Iterative Minimization / Gradient Descent

x(k)

x1(k) x1

x2

x2(k)

J

m

i

n

=
J
(x

L
S
)

J(x) = ‖b−Ax‖2 x(k + 1) = x(k) − µ
∂J(b)

∂x

∣
∣
∣
∣
x=x(k)

where

∂J(x)

∂x
= 2AT Ax − 2AT b = 2AT

(

Ax − b
︸ ︷︷ ︸

e

)

For k=1 to N

e(k) = b − Ax(k)

x(k + 1) = x(k) + 2µAT e(k)

next k

J(n) = E
{

e2(n)
}

=
∂J(n)

∂h
= 2E

{

e(n)
∂e(n)

∂h

}

=
∂J(n)

∂h
≃ 2e(n)

∂e(n)

∂h
=

∂Ĵ(n)

∂h

But e(n) = d(n) − xT h ⇒ ∂e(n)

∂
= −x(n) and so

ĥopt(n + 1) = ĥopt(n) − µ
∂Ĵ(n)

∂h
= ĥopt(n) + 2µe(n)x(n).

37

LMS algorithm

Given x[n] =
[

x(n) x(n − 1) · · · x(P)
]T

h[n] =
[

hn(0) hn(1) · · · hn(P)
]T

The LMS algorithm comprises of

y[n] = hT [n]x[n]

e[n] = d[n] − y[n]

h[n + 1] = h[n] + 2µe[n]x[n]

Although LMS is very simple to implement and fairly reliable however the conver-

gence of algorithm primarily depends on step size coefficients µ.

h(0)

J
h

h
opt

h(1)

For large values of µ algorithm converges rapidly whoever oscillates around optimal

point never gets there. For small values of µ algorithm is slow to converge. The

choice of inital guess also is important.

38

e(n)d(n)
h(n) he(n)

x(n) y(n)

d̂(n)x(n)d(n)

Implementation Complexity of LMS algorithm increases linearly with the number

of coefficients to be calculated. Which makes it an ideal choice for low complexity

solutions.

Some variants of LMS algorithm are

h(n + 1) = h(n) + 2µe(n)x(n) Linear

h(n + 1) = h(n) + 2µe(n)sgn

[

x(n)

]

Clipped

h(n + 1) = h(n) + 2µsgn

[

e(n)

]

x(n) Pilot

h(n + 1) = h(n) + 2µsgn

[

e(n)

]

sgn

[

x(n)

]

Zero Forcing

Increase hardware efficiency at the expense of performance

2.5 Recursive Least Squares

Now we consider the time-varying scenario

A(n)x = b(n)

The least square solution to this problem would be

xLS(n) =

(

AT (n)A(n)

)−1

AT (n)b(n)

39

hn+1

hn

J
RLS

(n)

h(0)

hn+2

h(1)

J
RLS

(n+2)

J

R

L

S

J
RLS

(n+1)

Repeated inversion of matrix is not feasible solution. Since xLS(n) may be related

to xLS(n−1) depending on how A(n) and b(n) are related to A(n−1) and b(n−1).

The principle of RLS algorithm to update the filter coefficients is outline as follows

For each n = 0, 1, 2, · · · , ∞

i. Calculate yn[k] =
P∑

l=0

hn[l]x[k − l] with k = 0, 1, 2, · · · , n.

ii. Calculate en[k] = d[k] − yn[k] with k = 0, 1, 2, · · · , n.

iii. Choose:

{

hn(l)

}P

l=0

to minimize JRLS =
n∑

k=0

λn−ke2
n(k) with forgetting factor

0 ≤ λ ≤ 1.

Kicking up the cost function bit further

∂JRLS(n)

∂hn(r)
=

n∑

k=0

λn−ke2
n(k) =

n∑

k=0

λn−k

(

d(k) − yn(k)
︸ ︷︷ ︸

en(k)

)2

∂JRLS(n)

∂hn(r)
=

n∑

k=0

λn−k2en(k)
∂en(k)

∂hn(r)
=

n∑

k=0

λn−k2en(k)(−x(k − r)) = 0

= −
n∑

k=0

λn−k
[

d(k) −
P∑

l=0

hn(l)x(k − l)
]

x(k − r) = 0

=
P∑

l=0

hn(l)
[n∑

k=0

λn−kx(k − l)x(k − r)
]

−
n∑

k=0

λn−kd(k)x(k − r) = 0 r = 0, 1, · · · , P

40

The above expression can be expressed in matrix form as
















n∑

k=0

λn−kx2(k)

n∑

k=0

λn−kx(k − 1)x(k) · · ·

n∑

k=0

λn−kx(k − P)x(k)

n∑

k=0

λn−kx(k)x(k − 1)

n∑

k=0

λn−kx2(k − 1) · · ·

n∑

k=0

λn−kx(k − P)x(k − 1)

..

.
..
. · · ·

..

.
n∑

k=0

λn−kx(k)x(k − P)

n∑

k=0

λn−kx(k − 1)x(k − P) · · ·

n∑

k=0

λn−kx2(k − P)























hn(0)

hn(1)

.

..

hn(P)








=
















n∑

k=0

λn−kd(k)x(k)

n∑

k=0

λn−kd(k)x(k − 1)

..

.
n∑

k=0

λn−kd(k)x(k − P)
















In short hand notation this adds up to

Rλ
xx(n)hn = rλ

xd(n)

hn =

(

Rλ
xx(n)

)−1

rλ
xd(n) n = 0, 1, · · · , ∞

so it is possible to calculate hn from hn−1 without having to calculate

(

Rλ
xx(n)

)−1

.

hn =

(

Rλ
xx(n)

)−1

rλ
xd(n)

Define x(k) =
[

x(k), x(k − 1), · · · , x(k − P)
]T

then

Rλ
xx(n) =

n∑

k=0

λn−kx(k)xT (k)

rλ
xd(n) =

n∑

k=0

λn−kd(k)x(k)

⇒ Rλ
xx(n) = λRλ

xx(n − 1) + x(k)xT (k)

rλ
xd(n) = rλ

xd(n − 1) + d(k)x(k)

So how do we evaluate

(

Rλ
xx(n)

)−1

from

(

Rλ
xx(n − 1)

)−1

?

Woodbury’s identity

(

A + uuT

)−1

= A−1 − A−1uuT A−1

1 + uT A−1u

41

using this identity to our problem we have

(

Rλ
xx(n)

)−1

= λ−1

(

Rλ
xx(n − 1)

)−1

−
[

1 + λ−1xT (n)

(

Rλ
xx(n − 1)

)−1

x(n)

]−1

︸ ︷︷ ︸

scalar

λ−2

(

Rλ
xx(n − 1)

)−1

x(n)xT (n)

(

Rλ
xx(n − 1)

)−1

42

RLS Summary

Initialize:

hT
−1 = 0

P(−1) = δ−1IP +1×P +1 where P(n) = R−1
xx (n)

Computation: For n = 0, 1, 2, · · ·

x(n) =

[

x(n), x(n − 1), · · · , x(n − P)

]T

hn =

[

hn(0), hn(1), · · · , hn(P)

]T

ǫ(n) = d(n) − hT
n−1x(n)

g(n) = P(n − 1)x(n)

{

λ + xT P(n − 1)x(n)

}−1

P(n) = λ−1P(n − 1) − g(n)xT (n)λ−1P(n − 1)

hn = hn−1 + ǫ(n)(n)

2.6 Langrange Multipliers Method

This technique was developed by Joseph-Louis Lagrange a French mathematician to

solve min-max problems in geometry.

Free maximum

Contrained
maximum

z = 49− x2 − y2

x+ 3y − 10 = 0

z

x

y

For any general multi-variate function f(x) we know that the maxima and the min-

ima of a general differentiable function occurs where the derivative of the function

43

in all directions is zero.

∇f(x) = 0 (2.2)

where ∇ is the gradient operator. ∇f(x) is the direction in which rate of increase

is maximum. There may be a problem that ∇f(x) is zero and we may still not

be at global maximum or minimum this happens due to a possible local minima or

maxima.

The method of Lagrange multiplier can restrict the search of solution in the

feasible set of values of x. The problem is typically formulated as

x∗ = arg min
x

f(x)

subject to gi(x) = 0 ∀i = 1, · · · , m

In English, find solution that minimizes f(x), as long as all equalities gi(x) = 0

hold.

The Lagrange Multiplier method works by putting the cost as well as the con-

straints in a single minimization problem, but multiply each constraint by λi.

x∗ = arg min
x

L(x, λ) = arg min
x

f(x) +
m∑

i=1

λigi(x)

The optimal value can be found through

∇L(x, λ) = ∇f(x) +
∑

i

λi∇gi(x) = 0

and

∂

∂λi

L(x, λ) = gi(x) = 0

For the case if we have n variables and m constraints we have n + m equations

and same number of unknowns.

The constraints are not merely limited to equalities on the contrary they can be

inequalities. The Karush-Kuhn-Tucker (KKT) conditions extend the method of

Lagrange multipliers to allow inequalities and KKT conditions are necessary for

optimality.

44

x∗ = arg min
x

f(x)

subject to gi(x) = 0 ∀i = 1, · · · , m

subject to hi(x) ≤ 0 ∀i = 1, · · · , n

In english, find the solution that minimizes f(x) as long as all equalities gi(x) and

all the inequalities hi(x) ≤ 0 hold.

x∗ = arg min
x

L(x, λ, µ) = arg min
x

f(x) +
m∑

i=1

λigi(x) +
n∑

i=1

µihi(x)

where L(x, λ, µ) is the Lagrangian and depends on λ, µ which are the vectors of

multipliers.

One need to be mindful of the fact that in some cases minimums and maximums

won’t exist even through the method will seem to imply they do. Every solution

should be examined.

Suppose that f(x, y, z) and g(x, y, z) are differentiable. To find the local maximum

and minimum value of f(·) subject to constraint g(x, y, z) = 0. Find the values of

(x, y, z) and λ that simultaneously satisfy the equations

∇f = λ∇g and g(x, y, z) = 0 (2.3)

In case of multiple constraints for example g1(x, y, z) and g2(x, y, z) when g1(·) and

g2(·) are both differentiable with ∇g1 not parallel to ∇g2 then

∇f = λ1∇g1 + λ2∇g2 and g1(x, y, z) = 0 g2(x, y, z) = 0 (2.4)

C

∇f

∇g1

∇g2

g2 = 0

g1 = 0

Now (2.4) can be interpreted as follows the surface g1 = 0 and g2 = 0 usually

intersect a smooth curve C and along this curve we seek points where f() has local

maximum and minimum values relative to other values on the curve. These are the

points where ∇f is normal to C and ∇g1 and ∇g2 are also normal to C at these

45

points because C lies in the surfaces g1(x, y, z) = 0 and g2(x, y, z) = 0 which is a

requirement in (2.4)

Example

Find the dimension of the box with largest volume is total surface area is 64cm2.

We want to find the greatest volume so the function that we want to optimize is

given by

f(x, y, z) = xyz

Next we know that the surface area of the box must be a constant 64. So this is the

constraint. The surface area of a box is simply the sum of the area of each of the

sides so the constraint is given by,

2xy + 2xz + 2yz = 64 ⇒ xy + xz + yz = 32

The equation for g(x, y, z) is thus

g(x, y, z) = xy + xz + yz

Here are the four equations that we need to solve

yz = λ(y + z) fx = λgx (a)

xz = λ(x + z) fy = λgy (b)

xy = λ(x + y) fz = λgz (c)

xy + xz + yz = 32 g(x, y, z) = 32 (†)

There are many ways to solve this system. Multiplying (a),(b) and (c) by x,y and

z respectively we have

xyz = λx(y + z) (d)

xyz = λy(x + z) (e)

xyz = λz(x + y) (f)

setting (d) and (e) equal gives

λx(y + z) = λy(x + z)

λ(xy + xz) − λ(xy + yz) = 0

λ(xz − yz) = 0

⇒ λ = 0 or xz = yz

46

We have two possibilities. The first λ = 0 is not possible since if this was true (a)

would reduce to

yz = 0 ⇒ y = 0 or z = 0

Since we are talking about dimension neither of these is possible so we can safely

discount λ = 0. This leaves the second possibility

xz = yz (∗)

since we know that z 6= 0 (as we are talking about the dimensions of a box) we can

cancel the z from both sides to have

x = y

Likewise lets set (e) and (f) equal

λy(x + z) = λz(x + y)

λ(xy + yz) − λ(xz + yz) = 0

λ(xy − xz) = 0

⇒ λ = 0 or xy = zx

We know that λ = 0 is not possible so this leaves

xy = zx ⇒ y = z (**)

Plugging (*) and (**) in (†) we have

y2 + y2 + y2 = 3y2 = 32 y=±
√

32

3
= ±3.266

Since y must be a positive number therefore the only solution that makes physical

sense is

x = y = z = 3.266

so the box actually is a cube.

Example

Minimize the l2-norm of the variable subjects to constraints

x∗ = arg min
x

L(x, λ) = arg min
x

‖x‖2 + λT (y − Ax)

47

the number of Lagrange multipliers is equal to the number of elements in y and the

gradiant with respect to x is

2x − AT λ = 0

As x depends on λ. From gradient of the constraint function with respect to λ we

get

y = Ax

Pre-multiply the first equation by A to get

2Ax = AAT λ

2y = AAT λ

λ = 2(AAT)−1y

x = AT (AAT)−1y

Example

The plane x + y + z = 1 cuts the cylinder x2 + y2 = 1 in an ellipse . Find the points

on the ellipse that lie closest to and farthest from origin.

Solution: we find the extreme value of f(x, y, x) = x2 + y2 + z2 the square of the

distance from (x, y, z) to origin subject to constraints

g1(x, y, z) = x2 + y2 − 1 = 0 (2.5)

g2(x, y, z) = x + y + z − 1 = 0 (2.6)

according to (2.4) the gradient of f(·) and g(·)

2xi + 2yj + 2zk = λ1(2xi + 2yj) + λ2(i + j + k)

2xi + 2yj + 2zk = (λ12x + λ2)i + (2λ1y + λ2)j + λ2k

which implies simply that

2x = 2λ1x + λ2

2y = 2λ1y + λ2

2z = λ2

48

2x = 2λ1x + 2z ⇒ (1 − λ1)x = z

2y = 2λ1x + 2z ⇒ (1 − λ1)y = z

These equations are satisfied simultaneously if either λ = 1 and z = 0 or λ 6= 1 and

x = y = z/(1 − λ).

If z = 0, then solving (2.5) and (2.6) simultaneously to find the corresponding points

in the ellipse gives two points (1, 0, 0) and (0, 1, 0) which makes sense as in figure.

If x = y then (2.5) and (2.6) give

x2 + x2 − 1 = 0 ⇒ x + x + z − 1 = 0

2x2 = 1 ⇒ z = 1 − 2x

x = ± 1√
2

⇒ z = 1 ∓
√

2

The corresponding points on the ellipse are

P1 =

(√
2

2
,

√
2

2
, 1 −

√
2

)

and P2 =

(

−
√

2

2
, −

√
2

2
, 1 +

√
2

)

But here while P1 and P2 both give local maxima of f on the ellipse, P2 is farther

from the origin than P1.

Example

Find the maximum and minimum of f(x, y) = 5x−3y subject to constraint x2+y2 =

136.

49

Using the definition

∂f(x, y)

∂x
=

∂g(x, y)

∂x
5 = 2λx (1)

∂f(x, y)

∂y
=

∂g(x, y)

∂y
−3 = 2λy (2)

g(x, y) = c x2 + y2 = 136 (3)

setting λ = 0 won’t satisfy the first two equations. So assuming that λ 6= 0 we can

solve (1) and (2) to find

x =
5

2λ
y = − 3

2λ

Plugging these into constraint equation

25

4λ2
+

9

4λ2
=

17

2λ2
= 136

which implies λ2 =
1

16
→ λ = ±1

4
. Now that we have λ we can find a few points

which will be potential maxima and minima

if λ =
1

4
we get x = −10 y = 6

if λ = −1

4
we get x = 10 y = −6

Maxima and Minima can be determined by plugging in the values

f(−10, 6) = −68 Minimum (−10, 6)

f(−10, 6) = 68 Maximum (10, −6)

Thus far we have considered cases with constraints with equality now will consider

cases which include inqualities

Example

Find the maximum and minimum values of f(x, y, z) = xyz subject to constraints

x + y + z = 1. Assume that x, y, z ≥ 0.

Our constraint is a sum of three positive or zero numbers and it must be 1. Therefore

the solution will fall in the range 0 ≤ x, y, z ≤ 1. So according to extreme value

theorem the maximum and minimum value must exist.

50

∂f(x, y, z)

∂x
=

∂g(x, y, z)

∂x
yz = λ (1)

∂f(x, y, z)

∂y
=

∂g(x, y, z)

∂y
xz = λ (2)

∂f(x, y, z)

∂y
=

∂g(x, y, z)

∂y
xy = λ (3)

g(x, y, z) = c x + y + z = 1 (3)

we notice that (1),(2) and (3) are equal to λ, by equating (1) and (2) we fine

yz = xz ⇒ z(y − x) = 0 ⇒ z = 0 or y = x

two possibilities i.e. either z = 0 or y = x. Starting with z = 0. In this case we

can see from (1) and (2) that we must have λ = 0. From (3) we see that this means

xy = 0. Which in turn means either x = 0 or y = 0. Thus the possible options look

like

z = 0, x = 0 ⇒ y=1

z = 0, y = 0 ⇒ x=1

So we have two possible solutions (0, 1, 0) and (1,0,0).

Now lets consider the other possibility x = y. We have two possible cases to look at

in this case.

The first case x = y = 0 in this case we can see from the constraint that we must

have z = 1 and so we now have the third solution (0,0,1).

The second case x = y 6= 0. setting (2) and (3) equal

xz = xy ⇒ x(z − y) = 0 ⇒ x = 0 or z = y

Since we have already assumed that x 6= 0 and so the only possibility is that z = y

which also means that x = y = z.

Using this constraint gives

3x = 1 ⇒ x =
1

3

Which implies

(

1

3
,
1

3
,
1

3

)

. These four solutions have been obtained by setting (1)

and (2). To find all solutions (1) must be set equal to (3) and similarly (2) must be

set equal to (3).

yz = xy ⇒ y(z − x) = 0 ⇒ y = 0 or z = x

xz = xy ⇒ x(z − y) = 0 ⇒ x = 0 or z = y

51

Not complete here! Lets check which solutions are maximum and minimum here

f(1, 0, 0) = 0 f(0, 1, 0) = 0 f(0, 0, 1) = 0 All minimum

f(
1

3
,
1

3
,
1

3
) Maximum

Now lets consider a problem dealing with multiple constraints

Example

Find the maximum and minimum values of f(x, y, z) = 4y−2z subject to constraints

2x − y − z = 2 and x2 + y2 = 1.

From the second constraint it is visible that −1 ≤ x, y ≤ 1. With this in mind there

must also be set of limits on z in order to make sure that the first term constraints

is met.

The definition of Lagrange multiplier for multiple constraints

∇f(x) − λi

∑

i

gi(x) = 0

∂f(x, y, z)

∂x
= 0

∂g1(x, y, z)

∂x
= 2

∂g2(x, y, z)

∂x
= 2x

∂f(x, y, z)

∂y
= 4

∂g1(x, y, z)

∂y
= −1

∂g2(x, y, z)

∂y
= 2y

∂f(x, y, z)

∂z
= −2

∂g1(x, y, z)

∂z
= −1

∂g2(x, y, z)

∂y
= 0

The system of equations to be solved

0 = 2λ1 + 2λ2x fx = λ1g1x + λ2g2x (1)

4 = −λ1 + 2λ2y fy = λ1g1x + λ2g2x (2)

−2 = −λ1 fz = λ1g1z + λ2g2z (3)

2x − y − z = 2 (4)

x2 + y2 = 1 (5)

We start by noticing that from (5) we get λ1 = 2 plugging this (1) and (2) and

solving for x and y respectively gives

0 = 4 + 2λ2x ⇒ x = − 2

λ2

4 = −2 + 2λ2y ⇒ y =
2

λ2

Plugging these result in (5)

52

4

µ2
+

9

λ2
2

=
12

λ2
2

⇒ λ2 = ±
√

13

♣ Putting the value of λ2 = +
√

13 in above to determine values of x and y

x = − 2√
13

y =
2√
13

Plugging these results in (4) yields

− 4√
13

− 3√
13

− z = 2 ⇒ z = −2 − 7√
13

♣ Now we assume λ2 = −
√

13 then

x =
2√
13

y = − 3√
13

Plugging these results in (4) yields

4√
13

+
3√
13

− z = 2 ⇒ z = −2 +
7√
13

Now that we have the two solutions applying them to the function to find which is

the minimum and maximum.

f

(

− 2√
13

,
3√
13

, −2 − 7√
13

)

= 4 +
26√
13

= 11.211 Maximum

f

(

2√
13

, − 3√
13

, −2 +
7√
13

)

= 4 − 26√
13

= −3.211 Minimum

Example Find the maximum and minimum of f(x, y) = 4x2 + 10y2 on a disk

x2 + y2 ≤ 4.

Sol:Using the definition:

〈fx, fy, fz〉 = λ 〈gx, gy, gz〉 = 〈λgx, λgy, λgz〉

∂f

∂x
= 8x

∂g

∂x
= 2λx

∂f

∂y
= 20y

∂g

∂y
= 2λy

∂f

∂λ
= 0

∂g

∂λ
= x2 + y2 − 4

from the above three equations we have

53

8x − 2λx = 0 x = 0 or λ = 4

x(4 − λ) = 0

x = 0 y = ±2

λ = 4

20y − 2λy = 0 20y = 8y → y = 0

x = ±2

therefore the possible set of solutions is

(0, 2), (0, −2), (2, 0) and (−2, 0)

Example Find the minimum value of function f(x, y, z) = x2 + 2y2 + z2 subject to

constraints

x + 2y + 3z = 1

x − 2y + z = 5

The Lagrangian function is of the form

L(x, y, z, λ, µ) = x2 + 2y2 + z2 + λ(x + 2y + 3z − 1) + µ(x − 2y + z − 5)

∂L

∂x
= 2x + λ + µ = 0 x = −1

2
(λ + µ)

∂L

∂y
= 4y + 2λ − 2µ = 0 y = −1

4
(2λ − 2µ)

∂L

∂z
= 2z + 3λ + µ = 0 z = −1

2
(3λ + µ)

∂L

∂λ
= x + 2y + 3z − 1 = 0 −6λ − µ = 1

∂L

∂µ
= x − 2y + z − 5 −λ − 2µ = 5

which leads to solution set

λ =
3

11
µ = −29

11

x =
13

11
y = −16

11
z =

10

11

Example: A company produces steel boxs at three plants in amount x, y and z

respectively, producing an annual revenue of f(x, y, z) = 8xyz2 −200(x+y+z). The

company is to produce 100 units annual. How should the production be distributed

to maximize revenue.

54

Solution: The Lagrangian function is of the form:

L(x, y, z, λ) = 8xyz2 − 200(x + y + z) + λ(x + y + z − 100)

∇L(x, y, z, λ) is determined as

1© ∂L

∂x
= 8yz2 − 200 + λ = 0 from 1© and 2© 8yz2 = 8xz2

2© ∂L

∂y
= 8xz2 − 200 + λ = 0 from 2© and 3© 8xz2 = 16xyz

3© ∂L

∂z
= 16xyz − 200 + λ = 0

4© ∂L

∂λ
= x + y + z − 100 = 0 The optimal sol. is x = 25, y = 25 and z = 50

Supplementary Problems

1. Find minimum of the function f(x, y) = x2 +y2 −2x+8y subject to constraint

x + 2y = 7.

2. Find maximum of the function f(x, y) = 9x2 + 36xy − 4y2 − 18x − 8y subject

to constraint 3x + 4y = 32.

3. Suppose the temperature at point (x,y) on a metal plate is T (x, y) = 4x2 −
4xy + y2. An ant walking on the plate traverses a circle of 5 centered around

origin. What is the highest and lowest temperature encountered by the ant.

4. Golf ball manufacturer, Pro-T, has developed a profit model that depends on

the number x of golf balls sold per month (measured in thousands), and the

number of hours per month of advertising y, according to the function

z = f(x, y) = 48x + 96y − x2 − 2xy − 9y2

where z is measured in thousands of dollars. The budgetary constraint function

relating the cost of the production of thousands golf balls and advertising units

is given by 20x + 4y = 216. Find the values of x and y that maximize profit,

and find the maximum profit.

55

Chapter 3
Linear Programming

Outline

The objecive of this chapter is to familiarize the students with the funda-

mental concepts of mechanics which will form basis of pivotal concepts of

Robotics. The topics included here are

A© Problem Formulation D© The Interior Point Method

B© Linear Programming Problem E© Duality in Linear Programming.

C© The Simplex Algorithm F© Matlab implementation

Optimization is an old problem, but the credit of developing a formal algorithm

goes to George Dantzig, who published his algorithm commonly known as ’Simplex

Method’ and the field is known as linear programming.The linear programming is a

small subset of problems within the class of general nonlinear optimization problems.

These problems are discussed in later chapters

Linear Programming

It is the process of minimizing a linear objective function subject to finite number

of linear equality and inequality constraints. The word programming is historical

and predates computer programming.

Examples applications:

♣ Airline crew scheduling

56

♣ Manufacturing and production planning

♣ Telecommunication Network design

3.1 Several Examples

Activity Analysis and Product Mix

A lumber mills saws both Finish-grade and Construct-grade boards from the logs

that it receives. Suppose that it takes 2 hours to rough-saw 1000 boardfeet of finish-

grade boards and 5 hours to plane each 1000 broad-foot of the construction-grade

boards. Suppose also that it takes 2 hours to rough-saw each 1000 board feet of

construction-grade boards but it takes only 3 hours to plane each 1000 board feet of

these boards. The saw is available for 8 hours/day and the plane is available for 15 hours/day

If the profit on each 1000 board feet of finish-grade boards is 120 $ and the profit

on each 100 board feet of the construction-grade boards is 100 $, how many board

feet of each type of the lumber should be sawed to maximize the profit.

Mathematical Model: let x and y denote the amount of finish grade and con-

struction grade lumber respectively to be sawed per day. Let units of x and y be

thousand board feet. The number of hours required daily for the saw is

2x + 2y

since saw is available only for 8 hours a day thus x and y must satisfy the quantity

2x + 2y ≤ 8

Similarly the number of hours required for the plane is

5x + 3y

So x and y must satisfy

5x + 3y ≤ 15

ofcourse, we must have

x ≥ 0 and y ≥ 0

57

The profit is $ to be maximized is given by

z = 120x + 100y

Thus our model is

Find the value of x and y that will

maximize z = 120x + 100y

Subject to restrictions 2x + 2y ≤ 8

5x + 3y ≤ 15

x ≥ 0

y ≥ 0

Graphical Visualization and Matlab Demo

3.1.1 Feasible Set

Each linear ineqaulity divides the n-dimensional space into two half-spaces one where

the inequality is satisfied, and one where it is not. Feasible set is solutions to a fam-

ily of linear inequalities.

The linear cost function defines a family of parallel hyperplanes (line in 2D, plane

in 3D and so on) want to find one of minimum cost → must occur at corner of the

feasible set.

The feasible set of standard LP:

• Intersection of a set of half-spaces, called a poly-hydron.

• Its bounded and non-empty its a polytope.

There are three cases:

• Feasible set is empty.

• Cost function is unbounded on feasible set.

• Cost function is maximum on feasible set.

For the two cases are very uncommon for real problems in economics and engineering.

58

Diet Problem

A nutritionist is planning a menu consisting of two main foods A and B. Each

once of A contains 2 units of Fat, 1 unit of Carbohydrates and 4 units of proteins.

Each ounce of B contains 3 units of Fat, 3 units of Carbohydrates and 3 units of

Proteins. The nutritionist wants a meal to provide atleast 18 units of Fat, atleast

12 units of Carbohydrates and atleast 24 units of Proteins. If an ounce of A costs 20

and an ounce of B costs 25 ; how many ounces of each food should be served to

minimize cost of the meal yet satisfy the requirements.

Mathematical Model

let x and y denote the number of ounces of food A and B that are served. Then x

and y have to satisfy the inequality such that

2x + 3y ≥ 18

similarly to meet the nutritionist requirements for carbohydrates and proteins, we

must have x and y satisfy

x + 3y ≥ 12

4x + 3y ≥ 24

of course, we also require

x ≥ 0 and y ≥ 0

The cost to be minimized is given by

z = 20x + 25y

Thus our model is :

Find the values of x and y that will

minimize z = 20x + 25y

Subject to restrictions 2x + 3y ≥ 18

x + 3y ≥ 12

4x + 3y ≥ 24

x ≥ 0

y ≥ 0

59

Transportation Problem

A manufacturer of plastic has two plants in Multan and Sukkur respectively. There

are three distributing warehouses in Karachi, Lahore and Faisalabad. The Sukkur

plant can provide 120 tons of supply per week, whereas Multan unit can supply 140

tons of material per week.

The karachi warehouse needs 100 tons to meet demand, the Lahore warehouse needs

60 tons while Faisalabad needs 80 tons weekly. The following table gives the shipping

costs per ton of the product

To

From Karachi Lahore Faisalabad

Sukkur 5 7 9

Multan 6 7 10

How many tons of plastic should be shipped from each plant to each warehouse to

minimize total shipping cost while meeting demand?

Mathematical Model let P1 and P2 denote plants at Sukkur and Multan, respec-

tively. Let W1, W2 and W3 denote the warehouses in Karachi, Lahore and Faisalabad

respectively. Let

xij = number of tons shipped from Pi to Wj

cij = cost of shipping 1 ton from Pi to Wj

for i = 1, 2 and j = 1, 2, 3. The total amount of plastic to sent from P1 is

x11 + x12 + x13

Since P1 can supply only 120 tons, we must have

x11 + x12 + x13 ≤ 120

Similarly, since P2 can supply only 140 tons, we must have

x21 + x22 + x23 ≤ 140

The amount of plastic received at W1 is

x11 + x21

60

The demand at W1 is 100 tons, we must have

x11 + x21 ≥ 100

similarly, the demand at W2 and W3 are 60 and 80 tons respectively,

x12 + x22 ≥ 60

x13 + x23 ≥ 80

Of course

xij ≥ 0 for i = 1, 2 and j = 1, 2, 3

The total transportation cost which we want to minimize is:

minimize z := c11x11 + c12x12 + c13x13 + c21x21 + c22x22 + c23x33

Thus our mathematical model is:

Find the values of x11,x13,x13,x21,x22,x23 that will

minimize z =
2∑

i=1

3∑

j=1

cijxij

Subject to restrictions
3∑

j=1

xij ≤ si i = 1, 2

3∑

j=1

xij ≥ dj j = 1, 2, 3

xij ≥ 0

where available supply s1 = 120 and s2 = 140 and the required demand are d1 = 100,

d2 = 60 and d3 = 80.

Example:

A store sells two types of toys, A and B. The store owner pays 8$ and 14$ for each

one unit of toy A and B respectively. One unit of toys A yields a profit of 2$ while

a unit of toys B yields a profit of 3$. The store owner estimates that no more than

2000 toys will be sold every month and he does not plan to invest more than 20,000$

in inventory of these toys. How many units of each type of toys should be stocked

in order to maximize his monthly total profit profit?

61

x and y is number of toys A & B x ≥ 0, y ≥ 0

a total of 2000 toys is to be sold x + y ≤ 2000

one unit of toy A yields profit of 2$

Profit=2x + 3y

one unit of toy B yields profit of 3$

Cost of A and B is 8$ & 14$

8x + 14y ≤ 20000

total budget is 20,000$

Example:

A company produces two types of tables, T1 and T2. It takes 2 hours to produce

the parts of one unit of T1, 1 hour to assemble and 2 hours to polish.It takes 4

hours to produce the parts of one unit of T2, 2.5 hour to assemble and 1.5 hours to

polish. Per month, 7000 hours are available for producing the parts, 4000 hours for

assembling the parts and 5500 hours for polishing the tables. The profit per unit of

T1 is 90$ and per unit of T2 is 110$. How many of each type of tables should be

produced in order to maximize the total monthly profit?

x,y is the number of T1 and T2 tables x ≥ 0, y ≥ 0

Profit from sale of T1 and T2 is 90$ and 110$ P (x, y) = 90x + 110y

T1 Takes 2 / 1 / 2 hrs to produce, assemble and polish 2x + 4y ≤ 7000

T2 Takes 4 / 2.5 / 1.5 hrs to produce assemble and polish x + 2.5y ≤ 4000

total 7000/ 4000 / 5500 hrs to produce, assemble and polish 2x + 1.5y ≤ 5500

A farmer plans to mix two types of food to make a mix of low cost feed for the

animals in his farm. A bag of food A costs 10$ and contains 40 units of proteins, 20

units of minerals and 10 units of vitamins. A bag of food B costs 12$ and contains

30 units of proteins, 20 units of minerals and 30 units of vitamins. How many bags

of food A and B should the consumed by the animals each day in order to meet the

minimum daily requirements of 150 units of proteins, 90 units of minerals and 60

units of vitamins at a minimum cost?

x,y is number of Bags of food A& B x ≥ 0 y ≥ 0

Profit from sale of T1 and T2 is 90$ and 110$ P (x, y) = 90x + 110y

Food A has 40/ 20 / 10 units of Proteins, Minerals & vitamins 40x + 4y ≤ 7000

Food B has 30/ 20 /30 units of Proteins, Minerals & vitamins x + 2.5y ≤ 4000

Minimum diet of 150, 90 and 60 units of p,m and v is required 2x + 1.5y ≤ 5500

62

3.2 General Linear Programming Problem

From the above examples a general linear programming problem can be stated as

follows:

Find x1, x2, · · · , xn that will

Min or Max z = c1x1 + c2x2 + · · · + cnxn

Subject to Restrictions

a11x1 + a12x2 + · · · + a1nxn ≤ (≥)(=)b1

a11x1 + a12x2 + · · · + a1nxn ≤ (≥)(=)b2

... +
... + · · · +

... ≤ (≥)(=)
...

am1x1 + am2x2 + · · · + amnxn ≤ (≥)(=)bm

(3.1)

The General Linear Programming Problem

where in each expression one and only one of the symbols ≥, ≤ and = occurs. The

linear function in (equation) is called the objective function. The equalities and/or

inequalities in (equation) are called constraints. Note that the left-hand sides of

all the inequalities or equalities are linear function of variables x1, x2, · · · , xn just

as the objective function is. A problem in which not all of the constraints or the

objective functions are linear function of the variables is a non-linear programming

problems. A linear Programming problem in standard form if it is in the following

form:

find values of x1, x2, · · · xn that will

maximize z = c1x1 + c2x2 + · · · + cnxn

s.t.

a11x1 + a12x2 + · · · + a1nxn ≤ b1

a21x1 + a22x2 + · · · + a2nxn ≤ b2

... +
... + · · · +

... ≤ ...

am1x1 + am2x2 + · · · + amnxn ≤ bm

(3.2)

Linear Programming Problem in Standard Form

63

A linear program is in conical form if it is in the following form:

find values of x1, x2, · · · xn that will

maximize z = c1x1 + c2x2 + · · · + cnxn

s.t.

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2

... +
... + · · · +

... =
...

am1x1 + am2x2 + · · · + amnxn = bm

(3.3)

Linear Programming Problem in Canonical Form

3.3 Some More Examples

The following problems are neither in canonical nor standard form, why!?

(a) min z = 3x + y

s.t.

2x + y ≤ 4

3x − 2y ≤ 6

x ≥ 0 y ≥ 0

(b) max z = 2x1 + 3x2 + 4x3

s.t.

3x1 + 2x2 − 3x3 ≤ 4

2x1 + 3x2 + 2x3 ≤ 6

3x1 − x2 + 2x3 ≥ −8

x1 ≥ 0 x2 ≥ 0 x3 ≥ 0

(c) max z = 3x + 2y + 3v − 2w

s.t.

2x + 6y + 2v − 4w = 7

3x + 2y − 5v + w = 8

3x + 2y − 5v + w ≤ 4

x ≥ 0, y ≥ 0, v ≥ 0, w ≥ 0

64

(d) min z = 2x + 5y + u + v + 4w

s.t.

3x + 2y − 4u = 4

4x + 5y + 3u + 2v = 7

6x + 7y + 2v + 5w ≤ 4

x ≥ 0, y ≥ 0,

u ≥ 0, v ≥ 0,

w ≥ 0,

(e) min z = 2x + 5y

s.t.

3x + 2y ≤ 6

2x + 9y ≤ 8

x ≥ 0

(f) min z = 2x1 + 3x2 + x3

s.t.

2x1 + x2 − x3 = 4

3x1 + 2x2 + x3 = 8

x1 − x2 = 6

x1 ≥ 0, x2 ≥ 0

Minimization Problem as Maximization Problem

Every minimization problem can be viewed as a maximization problem and con-

versely. This can be seen from the observation that

min
n∑

i=1

cixi = max

(

−
n∑

i=1

cixi

)

That is to minimize the objective functions we could maximize its negative and then

change the sign of the answer. The solution (a) would be to change the sign of cost

function.

(a) min −z = −3x − y

s.t.

2x + y ≤ 4

3x − 2y ≤ 6

x ≥ 0 y ≥ 0

65

Reversing an Inequality

If we multiply the inequality

k1x1 + k2x2 + · · · + knxn ≥ b

by -1, we obtain the inequality

−k1x1 − k2x2 − · · · − knxn ≤ −b

so in the part (b) of optimization problem can be converted into standard form by

multiplying the 3rd constraint inequality with a -1.

(b) max z = 2x1 + 3x2 + 4x3

s.t.

3x1 + 2x2 − 3x3 ≤ 4

2x1 + 3x2 + 2x3 ≤ 6

−3x1 + x2 − 2x3 ≤ 8

x1 ≥ 0, x2 ≥ 0,

x3 ≥ 0.

Changing Equality into Inequality

Observe that we can write the equation x = 6 into a pair of inequalities x ≤ 6 and

−x ≤ −6. In general case the equation

n∑

j=1

aijxj = bi (3.4)

can be written as a pair of inequalities

n∑

j=1

aijxj ≤ bi

n∑

j=1

−aijxj ≤ −bi

Thus (c) can be formulated as an standard problem by rewriting constraints (1)

and (2) as an inequality:

66

(c) max z = 3x + 2y + 3v − 2w

s.t.

2x + 6y + 2v − 4w ≤ 7

−2x − 6y − 2v + 4w ≤ −7

3x + 2y − 5v + w ≤ 8

−3x − 2y + 5v − w ≤ −8

3x + 2y − 5v + w ≤ 4

x ≥ 0, y ≥ 0,

v ≥ 0, w ≥ 0.

Unconstrained Variables

Suppose that xj is not constrained to be a non-negative. We replace xj with two

new variables x+
j and x−

j , letting

xj = x+
j − x−

j

where x+
j ≥ 0 and x−

j ≥ 0. That is any number is the difference of two non-negative

numbers. Therefore problems (e) and (f) can be converted into standard form as

(e) min z = 2x + 5y+ − 5y−

s.t.

3x + 2y+ − 2y− ≤ 6

2x + 9y+ − 9y− ≤ 8

x ≥ 0, y+ ≥ 0, y− ≥ 0,

(f) min z = −2x1 − 3x2 − x+
3 + x−

3

s.t.

2x1 + x2 − x+
3 + x−

3 = 4

3x1 + 2x2 + x+
3 − x−

3 = 8

x1 − x2 = 6

x1 ≥ 0, x2 ≥ 0

x+
3 ≥ 0, x−

3 ≥ 0

3.3.1 Matrix Notation

It is convenient to write a linear programming problem in matrix notation. Consider

the standard linear programming problem

67

max z = c1x1 + c2x2 + · · · + cnxn

s.t.

a11x1 + a12x2 + · · · + a1nxn ≤ b1

a21x1 + a22x2 + · · · + a2nxn ≤ b2

... +
... + · · · +

... ≤ ...

am1x1 + am2x2 + · · · + amnxn ≤ bm

xj ≥ 0 j = 1, 2, · · · , n

letting

A =











a11 a12 · · · a1n

a21 a22 · · · a2n

...
... · · · ...

am1 am2 · · · amn











, x =











x1

x2

...

xn











x =











b1

b2

...

bm











and, c =











c1

c2

...

cn











We can write our linear programming problem as:

find vector x ∈ R
n that will

max z = cT x

s.t Ax ≤ b

x ≥ 0

where inequality implies that every entry of the vector satisfies the condition.

Example The lumber problem:

Find a vector x ∈ R
2 that will

max z =
[

120 100
]




x

y





s.t




2 2

5 3








x

y



 ≤



8

15








x

y



 ≥ 0

Definition: A vector x ∈ R
n satisfying the constraints of a linear programming

problem is called feasible solution to the problem. A feasible solution that max-

68

imizes the objective function of a linear programming problem is called optimal

solution.

Changing an Inequality to an Equality

Consider a constraint

ai1x1 + ai2x2 + · · · + ainxn ≤ bi (3.5)

it is possible to convert (3.5) into an equation by introducing a new variable ui as

writing

ai1x1 + ai2x2 + · · · + ainxn + ui = bi (3.6)

The variable ui is non-negative and is called slack variable because it takes up the

slack between left and right side of the equation (3.5).

Converting the linear programming problem from the standard form as defined in

(3.2) to a problem in canonical form (3.3) by introducing a slack variable in each

of the constraints. Note each constraint will get a different variable. In the i−th

constraint inequality

ai1x1 + ai2x2 + · · · + ainxn ≤ bi (3.7)

we introduce a slack variable xn+i and write

ai1x1 + ai2x2 + · · · + ainxn + xn+i = bi (3.8)

because of the direction of the inequality we know that xi+1 ≤ 0; Therefore the

canonical form of the problem is

max z = c1x1 + c2x2 + · · · + cnxn

s.t.

a11x1 + a12x2 + · · · + a1nxn + xn+1 = b1

a21x1 + a22x2 + · · · + a2nxn + xn+2 = b2

... +
... + · · · +

... =
...

am1x1 + am2x2 + · · · + amnxn + xn+m = bm

x1 ≥ 0, x2 ≥ 0, · · · , xn ≥ 0, xn+1 ≥ 0, · · · , xn+m ≥ 0

(3.9)

the new problem has m equations and n+m unknowns in addition to non-negativity

restrictions on variable x1, x2, · · · , xn, xn+1, · · · , xn+m.

If y = [y1, · · · , yn]T is a feasible solution to the problem given by (3.2) then we

69

define yn+i for i = 1, 2, · · · , m by

yn+i = bi − ai1y1 − ai2y2 − ai3y3 − · · · − ainyn (3.10)

That is yn+i is the difference between the right side of the i−th constraint in (3.2)

and the value of the left side of this constraint at feasible solution y. Since each

constraint in (3.2) is of the ≤ form. We conclude that

yn+i ≤ 0, i = 1, 2, · · · , m (3.11)

This [y1, y2, · · · , yn, yn+1, · · · , yn+m]T satisfies (3.6) and (3.9) and the vector ŷ =

[y1, y2, · · · , yn, yn+1, · · · , yn+m] is feasible solution to the linear programming prob-

lem in canonical form given by (3.9). Then clearly y1 ≤ 0, y2 ≤ 0 · · · yn ≤ 0; Since

yn+i ≥ 0, i = 1, 2, · · · , m we see that

ai1y1 + ai2y2 + · · · + ainyn ≤ bi, i = 1, 2, · · · , m (3.12)

Here y = [y1, · · · , yn]T is a feasible solution to the linear programming problem in

a standard form given by (3.2). The discussion above shows that a feasible solution

to a standard linear programming problem yields solution to a canonical linear

programming problem by adjoining the values of the slack variables. conversely,

a feasible solution to the corresponding standard linear programming problem by

truncating the slack variables.

Now coming back to the mill example and introducing the slack variables

maximize z = 120x + 100y

s.t 2x + 2y + u = 8

5x + 3y + v = 15

x ≥ 0 y ≥ 0 u ≥ 0 v ≥ 0

In terms of model the slack variables u and v is the difference between the total

amount of the time that the saw is available, 8 hours and the amount of time is it

actually used 2x + 2y hours. Similarly, the slack variable v is the difference between

the total amount of time that the plane is available 15 hours and the amount of

time it is actually used 5x + 3y hours.

Assuming x = 2, y = 1 is a feasible solution to the problem in standard form. For

this feasible solution we have

u = 8 − 2 · 2 − 2 · 1 = 2

v = 15 − 5 · 2 − 3 · 1 = 2

70

Thus x = 2, y = 1, u = 2 and v = 2 is a feasible solution to the new form of the

problem.

Now consider the following set of values (x = 1, y = 1, u = 4 and v = 7) these

values lead to the new solution since

2 · 1 + 2 · 1 + 4 = 8

5 · 1 + 3 · 1 + 7 = 15

Consequently x = 1 and y = 1 is a feasible solution to the given problem. As we

have already evaluated the solution we know that if x =
3

2
, y =

5

2
, Therefore in

canonical form the solution to this problem

u = 2 · 3

2
+ 2 · 5

2
− 8 = 0

v = 5 · 3

2
+ 3 · 5

2
− 15 = 0

This is an optimal solution to the problem in canonical form is

x =
3

2
y =

5

2
u = 0 v = 0

The linear program problem given in (3.9) can be written in matrix form as follows:

A =











a11 a12 · · · a1n 1 0 · · · 0

a21 a22 · · · a2n 0 1 · · · 0
...

... · · · ...
. 0

am1 am2 · · · amn 0 0 · · · 1











×





















x1

x2

...

xn

xn+1

...

xn+m





















b =











b1

b2

...

bm











and c =





















c1

c2

...

cm

0
...

0





















71

max z = cT x

s.t Ax = b

x ≥ 0

Note: This problem is in canonical form.

Example:Convert the following LPP into canoncial form.

max 80x + 70y

s.t.

6x + 3y ≤ 96

x + y ≤ 18

2x + 6y ≤ 72

x ≥ 0 y ≥ 0

max 6x1 + 14x2 + 13x3

s.t.

0.5x1 + 2x2 + x3 ≤ 24

x1 + 2x2 + 4x3 ≤ 60

x1 ≥ 0 x2 ≥ 0 x3 ≥ 0

Exercise: Students are encourage to sketch and then use linprog tool to evaulate

the following LPPs

max z = x + 2y

s.t.

3x + y ≤ 6

3x + 4y ≤ 12

x ≥ 0 y ≥ 0

max z = 5x − 3y

s.t.

x + 2y ≤ 4

x + 3y ≥ 6

x ≥ 0 y ≥ 0

max z = 3x + y

s.t.

−3x + y ≥ 6

3x + 5y ≤ 15

x ≥ 0 y ≥ 0

max z = 2x + 3y

s.t.

3x + y ≤ 6

x + y ≤ 4

x ≥ 0 y ≥ 0

72

3.4 Duality

1. Every linear program has a Dual.

2. If the original is a maximization, the dual is a minimization problem

and vice-versa

3. Solution of one problems leads to the solution of other.

Primal Problem: Maximize cT x subject to Ax ≤ b, x ≥ 0.

Dual Problem: Minimize yT b subject to AT y ≥ c, y ≥ 0.

If one has optimal solution so does the other and their values are the same.

In this section we illustrate how to associate a minimization problem with linear

programming problem in standard form. There are some very interesting interpre-

tations of the associated problem that we discuss.

Generally a problem in standard form can be thought of as manufacturing problem,

one in which scarce resources are allocated in a way that maximize profit. The

associated minimization problem is the one that seeks to minimize cost.

Consider the pair of linear programming problem

max z = 5x + 2y

s.t x + 3y ≤ 12

3x − 4y ≤ 9

7x + 8y ≤ 20

x ≥ 0 y ≥ 0

The corresponding minimization problem would be

max z = 12a + 9b + 20c

s.t a + 3b + 7c ≥ 5

3a − 4b + 8c ≥ 2

a ≥ 0 b ≥ 0 c ≥ 0

max z = cT x min w = bT y

s.t Ax ≤ b s.t AT y ≥ c

x ≥ 0 y ≥ 0

(3.13)

73

where A is m × n matrix c and x are n × 1 column vectors and b and y are m × 1

column vectors.

These problems are called dual problems. The formal is called primal and later is

call dual problem. Theorem: given a primal problem, the dual of its dual problem

is again the primal problem.

Primal Problem Dual Problem

Maximization Minimization

Coefficients of the objective function Right-hand side of constraints

Coefficients of i−th constraint is an inequality Coefficients of i−th variable, one in each constraint

i−th constraint is an inequality ≤ i−th variable is ≥ 0

i−th constraint is an inequality = i−th variable is unrestricted

j−th variable is unrestricted j−th constraint is an equality

j−th variable is ≥ 0 j−th constraint is an inequality ≥

Number of variables Number of constraints

Relation between Primal and Dual Problem

Any linear programming problem can have three possible outcomes

1. No feasible solution exists.

2. There is a finite optimal solution

3. Feasible solution does not exist but objective function is unbounded.

Since the dual problem is a linear programming problem attempting to solve it also

leads to these three possible outcomes. Consequently in considering relationship

between solutions to the primal and dual problems there are nine alternative pairs

of solutions. We now present theorems that show which of these alternatives actually

can occur.

Primal

Finite Optimal Unbounded infeasible

D
u
al

Finite Optimal possible impossible impossible

Unbounded impossible impossible possible

Infeasible impossible possible possible

Example-1

max z = 2x1 + x2 min z′ = 6w1 + w2

s.t. s.t.

3x1 − 2x2 ≤ 6 3w1 + w2 ≥ 2

x1 − 2x2 ≤ 6 −2w1 − 2w2 ≥ 1

x1 ≥ 0, x2 ≥ 0 w1 ≥ 0, w2 ≥ 0

74

x1

x2

3x1 − 2x2 = 6

x1 − 2x2 = 1

y2

y1

3y1 + y2 = 2

−2y1 − 2y2 = 1

Example-2

max z = 3x1 + 2x2 min z′ = −w1 − 4w2

s.t. s.t.

3x1 − 2x2 ≤ −1 2w1 − 2w2 ≥ 3

−2x1 + 2x2 ≤ −4 −2w1 + 2w2 ≥ 2

x1 ≥ 0, x2 ≥ 0 w1 ≥ 0, w2 ≥ 0

y1

y1

2y1 − 2y2 = 3

x1

x2

−2x1 + 2x2 = −4

2x1 − 2x2 = −1 −2y1 + 2y2 = 2

75

Example-3

max z = 2x1 + x2 min z′ = 8w1 + 18w2

s.t. s.t.

x1 + 2x2 ≤ 1 w1 + 3w2 ≥ 2

3x1 + 4x2 ≤ 18 2w1 + 4w2 ≥ 1

x1 ≥ 0, x2 ≥ 0 w1 ≥ 0, w2 ≥ 0

x1 + 2x2 ≤ 8

3x1 + 4x2 ≤ 18
x1

x2

w1 + 3w2 ≥ 2

2w1 + 4w2 ≥ 1

w2

w1

3.4.1 Weak Duality Theorem

if x0 is a feasible solution to the primal problem

max z = cT x min w = bT y

s.t Ax ≤ b s.t AT y ≥ c

x ≥ 0 y ≥ 0

(3.14)

then

cT x0 ≤ bT y0 (3.15)

i.e. the value of objective function of the dual problem is always greater than or

equal to the value of the objective function of the primal problem

Primal
Problem

Problem
Dual

maximization

minimization

Duality Gap

76

Proof:

Ax0 ≤ b

it follows from above that

yT
0 Ax0 ≤ yT

0 b = bT y0

since y0 ≥ 0. The equality in above expression comes from the fact that y0b is a

scalar.

Since y0 is a feasible solution we have

AT y0 ≥ c

taking its transpose yields

y0A ≥ cT

Multiply by x0 (which in non-negative) and does not change in the inequality. We

get

yT
0 Ax0 ≥ cT x0

combining the inequalities above gives the desired results.

3.4.2 Strong Duality Theorem

a. if either the primal or dual problem has a feasible solution with a finite optimal

objective value, then the other problem has feasible solution with same objective

value.

b. if primal and dual equations as defined in (3.13) have feasible solutions then

• if the primal problem has an optimal solution- say x0

• if the dual problem has an optimal solution - say y0 then

• cT x0 = bT y0

Proof is not pursued here.

3.5 Complementary Slackness Theorem

For an pair of optimal solutions to primal and duals problems we have:

77

a for i = 1, 2, · · · , m the product of the i−th slack variable for the primal problem

and the i−th dual variable is zero. That is xn+i · wi = 0 for i = 1, · · · , m.

b for j = 1, 2, · · · , n, the product of j−th slack variable for the dual problem and

the j−th variable for the primal problem is zero.

Another way to state the theorem is that if i−th slack variable of the primal problem

is not zero, then i−th dual variable must be zero. Likewise, if j−th slack variable

of the dual problem is not zero, then the j−th primal variable must be zero. Note

that it is possible for both the slack variable and its corresponding dual variable to

be zero.

Consider we have a linear optimization problem is standard form

Primal Dual

max z =
n∑

j=1

cjxj min w =
n∑

i=1

yibi

s.t. s.t.

z =
n∑

j=1

aijxj ≤ bi w =
n∑

i=1

aijyi ≥ cj

xj ≥ 0 j = 1, · · · , m yi ≥ 0 i = 1, · · · , n

we add slack variables to convert the system into canonic form

max z =
n∑

j=1

cjxj min w =
n∑

i=1

yibi

s.t. s.t.

z =
n∑

j=1

aijxj + si = bi w =
n∑

i=1

aijyi − ej = cj

i = 1, · · · , m j = 1, · · · , n

xj ≥ 0 j = 1, · · · , n yi ≥ 0 i = 1, · · · , n

si ≥ 0 i = 1, · · · , m ej ≥ 0 j = 1, · · · , m

(3.16)

The complementary slackness theorem states that:

let x = [x1, · · · , xn] be a feasible solution to a primal

let y = [y1, · · · , ym] be a feasible solution to a dual

Then x is a primal and y is dual optimal solution if

siyi = 0 i = 1, · · · , m

ejxj = 0 j = 1, · · · , n
(3.17)

78

Primal Dual

max z = 60x1 + 30x2 + 20x3 min w = 48y1 + 20y2 + 8y3

s.t. s.t.

8x1 + 6x2 + x3 ≤ 48 8y1 + 4y2 + 2y3 ≥ 60

4x1 + 2x2 + 1.5x3 ≤ 20 6y1 + 2y2 + 1.5y3 ≥ 30

2x1 + 1.5x2 + 0.5x3 ≤ 8 8y1 + 4y2 + 2y3 ≥ 20

(3.18)

Optimal Primal Solution Optimal Dual Solution

x1 = 2,x2 = 0,x3 = 8 y1 = 0,y2 = 10,y3 = 10

s1 = 24,s2 = 0,s3 = 0 e1 = 0,e2 = 5,e3 = 0

z∗ = 280 w∗ = 280

3.6 Simplex Algorithm

Simplex algorithm is one of the most important things to be invented discovered in

20th century. This has allowed for systematic optimization of linear optimization

problems. The algorithm has evolved tremendously since its conception in the late

1940’s.

The main idea of simplex method is that it finds the optimal problem by traversing

through the corner points of the feasibility region as illustrated in the figure below:

The main draw back of this algorithm is its computational complexity is polynomial

79

order i.e. Ck
n, where n is the number of variables while C and k are some +ve con-

stants. And this algorithm may eventually not converge to optimality under certain

conditions. This algorithm is elegant and suitable for computer implementation

however its equally solvable for simple optimization problems.

80

The simplex Method

Standard Form

To solve a linear programming problem in standard form use the following

steps

a. Convert each inequality in the set of constraints to an equation by adding

slack variables.

b. Create initial simplex tableau.

c. Locate the most negative entry in at bottom row. The column from this

entry is called entry column. If tie occurs, any of the tied entries can be

used to determine the entering column.

d. From the ratio of the entries in the b-column with their corresponding positive

enteries in the entering column. The Departing row corresponds to the

smallest non-negative ratio bi/aij, if all entries in the entering column are 0

or negative, then there is no maximum solution. For ties choose either entry.

The entry in the departing row and entering column is called the pivot.

e. Use elementary row operations so that pivot is 1, and all other entries in the

entering column are 0. The process is called pivoting.

f. If all entries in the bottom row are zero or positive, this is the final tableau.

If not, go back to step e.

Example-1:lets consider the Lumber mill optimization problem

max z = 120x + 100y

s.t.

2x + 2y ≤ 8

5x + 3y ≤ 15

x ≥ 0 y ≥ 0

must be converted into canonical form

z − 120x − 100y = 0

2x + 2y + s1 = 8

5x + 3y + s2 = 15

81

1© x y s1 s2 z b

s1 2 2 1 0 0 8

s2 5© 3 0 1 0 15

−120
↑

-100 0 0 1 0

identify the most negative entry in the last row i.e. entering row and calculate the

ratio
bi

aij

. The row which provides the lowest ratio is considered and corresponding

row element is called the pivot element.

Now we need to set the pivot element → 1 and the other elements of pivot column

→ 0.

R1 = R1 − 2

5
× R2

R2 =
1

5
× R2

R3 = R3 + 24 ∗ R2

Application of these row operations on the tableau 1© would yield into

2© x y s1 s2 z b

s1 0
4

5
1 -

2

5
0 2

x 1
3

5
0

1

5
0 3

0 -28 0 24 1 360

3 4

3

4

(3
2
,
5

2
)

2x+ 2y ≤ 8

5x+ 3y ≤ 15

marking the entering column and leaving row into the simplex tableau above

2© x y s1 s2 z b

s1 0
4

5
© 1 −2

5
0 2

x 1
3

5
0

1

5
0 3

0 −28
↑

0 24 1 360

82

R1 =
5

4
× R1

R2 = R2 − 3

4
× R1

R3 = R3 + 35 ∗ R1

Application of these row operations on the tableau 2© would yield into

3© x y s1 s2 z b

y 0 1
5

4
-
1

2
0

5

2

x 1 0 -
3

4

1

2
0

3

2

1 0 35 10 1 430

Since all the elements of in bottom row are ≥ 0 the optimal point has been reached.

Example-2:lets consider another optimization problem

max z = 2x + 3y

s.t.

x + 3y ≤ 9

2x + 3y ≤ 12

x ≥ 0 y ≥ 0

must be converted into canonical form

z − 2x − 3y = 0

x + 3y + s1 = 9

2x + 3y + s2 = 12

1© x y s1 s2 z b

s1 1 3© 1 0 0 9

s2 2 3 0 1 0 12

-2 -3
↑

0 0 1 0

Now we need to set the pivot element → 1 and the other elements of pivot column

→ 0.

R1 =
1

3
R1

R2 = R2 − R1

R3 = R3 + R1

83

Application of these row operations on the tableau 1© would yield into

2© x y s1 s2 z b

y
1

3
1

1

3
0 0 3

s2 1 0 -1 1 0 3

−1
↑

0 1 0 1 9

marking the entering column and leaving row into the simplex tableau above

R1 = R1 − 1

3
× R2

R2 = R2

R3 = R3 + R2

Application of these row operations on the tableau 2© would yield into

3© x y s1 s2 z b

y 0 1
2

3
-
1

3
0 2

x 1 0 -1 1 0 3

0 0 0 1 1 12

Example-3:Lets consider the following optimization problem

max f = 2x + 4y + 3z

s.t.

x + y + z ≤ 12

x + 3y + 3z ≤ 24

3x + 6y + 4z ≤ 90

x ≥ 0 y ≥ 0 z ≥ 0

must be converted into canonical form

f − 2x − 4y − 3z = 0

x + y + z + s1 = 12

x + 3y + 3z + +s2+ = 24

3x + 6y + 4z + +s3 = 90

84

x y z s1 s2 s3 f b

s1 1 1 1 1 0 0 0 12

s2 1 3 3 0 1 0 0 24

s3 3 6 4 0 0 1 0 90

-2 -4
↑

-3 0 0 0 1 0

R1 =

R2 =

R3 =

x y z s1 s2 s3 z b

s1
2

3
0 0 1 -

1

3
0 0 4

s2
1

3
1 1 0

1

3
0 0 8

s3 1 0 -2 0 -2 1 0 42

-
2

3
0 1 0

4

3
0 1 32

R1 =

R2 =

R3 =

x y z s1 s2 s3 z b

s1 1 0 0
3

2
-
1

2
0 0 6

s2 0 1 1 -
1

2

1

2
0 0 6

s3 0 0 -2 -
3

2
-
3

2
1 0 36

0 0 1 1 1 0 1 36

3.6.1 Variants of Simplex Algorithm

Simplex method opened up an new field of research aiming to to optimize the im-

plementation and avoiding degeneracy. Only a few methods are presented here for

brevity.

85

3.6.2 The big-M Method

One way to guarantee that the new optimal solution is optimal for the original LP,

is to modify the objective function, so that the artificial variable will take value zero

in the new optimal solution. In other words, a very large penalty is added to the

objective function if the slack variables take positive value.

Consider the following LP:

max z = 2x + 3y

s.t.

x + 3y ≤ 9

2x + 3y ≤ 12

x ≥ 0 y ≥ 0

z − 2x − 3y = 0

x + 3y + s1 + Ma1 = 9

2x + 3y + s2 = 12

Here M is a symbolic big positive number. It is so big that even if a1 is slightly

big than 0, the penalty -Ma1 will be severe. In this case, it is reasonable that the

optimal solution to this new LP will take value 0 for the artificial variable a1, and

hence an optimal solution for the original LP.

3.6.3 Two Phase Method

The two-phase method and big-M method are equivalent. In practice, however, most

computer codes utilizes the two-phased method. The reasons are that the inclusion

of the big number M may cause round-off error and other computational difficulties.

The two-phase method, on the other hand, does not involve the big number M and

hence all the problems are avoided. The two-phase method, as it is called, divides

the process into two phases.

Phase 1: The goal is to find a BFS for the original LP. Indeed, we will ignore the

original objective for a while, and instead try to minimize the sum of all artificial

variable. At the end of phase 1, a basic feasible solution (BFS) is obtained if the

minimal value of this LP is zero.

Phase 2: Drop all the artificial variables, change the objective function back to the

original one. Use just the regular simplex algorithm, with the starting BFS obtained

in Phase 1.

86

3.7 Karush-Kuhn-Tucker Conditions

For a general optimization problem

optimize f(x) x ∈ ℜn

gi(x) ≥ bi i = 1, · · · , n

s.t.hj(x) = bj j = 1, · · · , m

The necessary condition for optimization

1. Primal Feasibility

gi(x
∗) − bi for i = 1, · · · , n feasible

hj(x
∗) − bj for j = 1, · · · , m feasible

2. Stationarity

max ∇f(x∗) =
n∑

i=1

µi∇(gi(x
∗) − bi) +

m∑

i=1

λj∇(hj(x
∗) − bj)

3. Complimentary Slackness

µigi(x
∗) = 0 whereµi ≥ 0

Example-1 Consider the following optimization

f(x) = x

s.t.

y ≥ (1 − x)3

y ≥ 0

According to Karush-Khun-Tucker conditions, any feasible solution must satisfy the

following condition

87

∇f(x∗) −
k∑

j=1

λj∇hj(x
∗) −

m∑

i=1

µi∇gi(x
∗) = 0

µ∗
i gi(x

∗) = 0

µ∗
i ≥ 0

please recall that

∇f(x) =







∂f

∂x
∂f

∂y










1

0





∇f(·)

−



−3(x − 1)2

1





∇g1(·)

−



0

−1





∇g2(·)

=




0

0





We need to plot the graph to illustrate the nature of the graph and also we need

to justify why the value is ’zero’.

Since no value of µ1 and µ2 exist such that

∇f(x∗) −
m∑

i=1

µi∇gi(x
∗) = 0

Example-2 Consider the following optimization

max −(x − 2)2 − 2(y − 1)2

s.t.

x + 4y ≤ 3

−x + y ≤ 0




−2(x − 2)

−4(y − 1)





∇f(·)




1

4





∇g1(·)




−1

1





∇f(·)

88

there are several possibilities and one of them may be feasible and optimal

µ1 = µ2 = 0 → x = 2, y = 1

µ1 = 0, x − y = 0 → x =
4

3
, µ2 = −4

3

3 − x − 4y = 0, µ2 = 0 → x =
5

3
, y =

1

3
, µ1 =

2

3

3 − x − 4y = 0, x − y = 0 → x =
3

5
, y =

3

5
, µ1 =

22

25
, µ2 = −48

25

Example

R

20 V
10 Ωi

i =
20

10 + R
p = i2R

The optimization problem is defined as

min − 400R

(10 + R)2

s.t.

−R ≥ 0

The KKT condition for a feasible solution

∇f(·) − µ∇g(·) = 0

400(R − 10)

(10 + R)3
− µ = 0

The graphical illustration of the graph is as follows

89

−10 −5 5 10

−10

−5

5

10

R

p(R) =
400(R − 10)

(10 + R)3

3.8 Interior Point Method

The simplex method (SM) has some convergence problems (i.e. it does not always

converge to the optimal solution) additionally the complexity of SM is polynomial

time. In 1984 Karamaker proposed an algorithm which unlike SM (which treads

the edges of the Feasibility region) works through the interior of feasibility region

to find the optimal point. The path following method is not described by Newton’s

method and Barrier function. The method is called interior point method because

this algorithm is initialized with a reference point x0 in the interior of feasibility

region. The concept is illustrated in figure below:

xopt

x0

The idea is based on Newton’s Method on finding minima and maxima of function.

For a smooth nonlinear function solve:

f(x) = 0

90

Taylor’s theorem (linearization)

f(x0 + dx) ≈ f(x0) + ∇f(x0 + dx)

If x0 is initial guess, computer dx such that f(x + dx) = 0

f(x0) + ∇f(x0)dx = 0 ⇒ dx = −(∇f(x0))−1f(x0)

dx defines the search direction , new point x+ i.e.

x+ = x0 + αdx

where 0 ≤ α ≤ 1 is the step size

x0x1x2

x1 = x0 −
f(x0)

f ′(x0)
f(x)

x

f(x0)

f(x1)

f(x2)

x2 = x1 −
f(x1)

f ′(x1)

xn+1 = xn −
f(xn)

f ′(xn)

The problem can be reformulated from the standard to canonical form

min f(x) x ∈ ℜn min f(x) x ∈ ℜn

s.t. s.t.

h(x) h(x) − b − w

w ≥ 0 h(x) = 0

x ≥ 0

w ≥ 0

An elegant way to get rid of limitations on variables x is to include a penalty in the

cost function. This technique is typically known as the Barrier function

91

Primal Dual

min f(x) x ∈ ℜn min f(x) x ∈ ℜn

s.t. s.t.

h(x) = 0 h(x) − µ
n∑

i=1

ln(xi)

x ≥ 0 h(x) = 0

c(x) = 0

0 5 10 15 20

0

50

100 µ = 0.1
µ = 0.25
µ = 0.5
µ = 1.0
µ = 2.5
µ = 5

Example: Consider the optimization problem in standard format

min (x − 3)2

s.t.
x ≤ 0

which is
min (x − 3)2 − µln(x)

0 2 4 6 8 10

−10

0

10

20

30

40
µ = 0.1
µ = 0.25
µ = 0.5
µ = 1.0
µ = 2.5
µ = 5

min f(x)

s.t.

gi(x) ≥ 0 i = 1, · · · , m

x ≤ 0

92

Translating the problem into canonical form

min f(x)

s.t.

gi(x) − s = 0 i = 1, · · · , m

s ≤ 0

The logarithmic barrier function is now introduced:

min f(x) − µ
m∑

i=1

log(si)

s.t.

h(x) − s = 0 i = 1, · · · , m

s ≤ 0

Now incorporate the equality constraint into the objective function using Lagrange

multiplier

min f(x) − µ
m∑

i=1

log(si) − yT (g(x) − s)

checking the stationarity of KKT conditions

∇f(x) − ∇g(x)T y = 0

−µW−1e + y = 0

g(x) − s = 0

rearranging these equations we have

∇f(x) − ∇g(x)T y = 0

WYe = µe

g(x) − s = 0

Utilize newton’s method to determine the search directions ∆x, ∆s and ∆y,








G(x, y) 0 −A(x)T

0 Y W

A(x) −I 0















∆x

∆s

∆y








=








−∆f(x) + A(x)T y

µe − WYe

−g(x) + s








where G(x, y) = ∇2f(x) −
m∑

i=1

yi∇2gi(x) and A(x) = ∇g(x).

93

Using the set of equations




−G(x, y) AT (x)

A(x) WY−1








∆x

∆y



 =




∆f(x) − AT (x)y

−g(x) + µY−1e





From here, perform iterations:

xk+1 = xk + αk∆xk

sk+1 = sk + αk∆sk

yk+1 = yk + αk∆yk

The interior point method approximates the constraints of a linear programming

model as a set of boundaries surrounding a region. These approximations are used

when the problem has constraints that are discontinuous or otherwise troublesome,

but can me modified so that a linear solver can handle them. Once the problem is

formulated in the correct way, Newton’s method is used to iteratively approach more

and more optimal solutions within the feasible region. Two practical algorithms exist

in IP method: barrier and primal-dual. Primal-dual method is a more promising

way to solve larger problems with more efficiency and accuracy. As shown in the

figure above, the number of iterations needed for the primal-dual method to solve a

problem increases logarithmically with the number of variables, and standard error

only increases rapidly when a very large number of dimensions exist.

94

Chapter 4
NonLinear Programming Techniques

Outline

Now that we have familiarized ourselves with simplest (Linear) program-

ming techniques which are although important but very limited in their ca-

pabilities. In this chapter we study some of the wider class of Programming

techniques which cater to a wider class of linear programming techniques.

A© Quadratic Programming E© Semi-Definite Programming .

B© Cone Programming F© Matlab Implementations.

C© Integer Programming G© .

D© Second Order Cone Programming. H©.

4.1 Integer Programming

Thus far we have been concerned with finding optimal values of parameters which

are continuous in nature. Now we consider a special type of optimization problems

where optimal solution take on only integer values. This kind of optimization is

particularly useful if we have to decide which stocks to buy, the optimal route to

destination, the optimal warehouse to get/send goods to.

min z : cT x

s.t Ax ≤ b

0 ≤ xj ≤ 1 xj ∈ Z j = 1, · · · , n

95

In its general form the Integer programming problem can have a mix of possible

outcomes i.e. some of the parameters can take on real values while other parameters

could only be integer values. While in another case the problem could be a purely

binary problem.

Example: Depot Location

Example: a company has selected m possible sites for distribution of its products

in a certain area. There are n customers in the area and the transport cost of

supplying the whole of customer j’s requirements over the given planning period

from potential cite i is cij. Should site i be developed it will cost fi to construct

depot there. Which sites should be selected to minimize the total construction and

transportation cost?

To solve this problem we introduce m variables y1, · · · , ym which can only take

values 0 or 1 and correspond to a particular site being not developed or developed

respectively. We next define xij to be the fraction of customer j’s requirements

supplied from depot i in a given solution. The problem can be expressed as

min z :
m∑

i=1

n∑

j=1

cijxij +
m∑

i=1

fiyi

s.t
m∑

i=1

xij = 1; xij ≤ yi i = 1, · · · , m j = 1, · · · , n

xij ≥ 0, 0 ≤ yi ≤ 1, yi ∈ Z i = 1, · · · , m j = 1, · · · , n

Note that yi = 0 then fiyi = 0 and there is no contribution to the total cost. Also

xij ≤ yi implies xij = 0 for j = 1, · · · n and so no good are distributed from site i

(i.e. no depot at site i).

On the other hand, if yi = 1 then fiyi = fi which the cost of constructing depot i.

Also xjj ≤ yi becomes xij ≤ 1 which holds anyway from constraints.

this need to be explained better

4.2 Quadratic Programming

The problem is defined as

min xT Px + qT x

s.t Gx � h

Ax = b

x ≥ 0

96

where Gx � h implies every element-wise inequality.

Example:

min
1

2
x2 + 3x + 4y

s.t x + 3y ≥ 15

2x + 5y ≤ 100

3x + 4y ≤ 80

x, y ≥ 0

This problem can be expressed as

min
x,y

1

2

[

x y
]




1 0

0 0



+




x

y



+
[

3 4
]




x

y





This problem can be fed into matlab ‘Quadprog’ for solution for example.

a. Write the following polynomial as xT Ax.

b. Formulate the following optimization problem

min 2x2
1 + x2

2 − 2x1x2 − 5x1 − 2x2

s.t 3x1 + 2x2 ≤ 20

−5x1 + 3x2 ≤ 4

x1, x2 ≥ 0

Notice that the constraints are only linear yet a more generalized form ‘Quadratic

Constraints Quadratic Programming’ considers more general quadratic constraints

(more on this later).

4.3 Geometric Programming

Geometric Programming was invented by Duffin, Petterson and Zener in 1967. This

type of optimization problem finds application in geometrical problems, problems

which can be accurately approximated by power laws. A geometric program is

classified into two types namely monomials and posynomials which are defined as

follows

f(x) = Cxa1

1 xa2

2 · · · xan

n

97

where C ≥ 0, ai ∈ R, ai can take -ve values aswell. The posynomials can be defined

as

f(x) =
K∑

k=1

Ckxa1k

1 xa2k

2 · · · xank

n

Quick Examples:

2x−π
1 x0.5

2 + 3x1x100
3 is a posynomial in x

x1 − x2 is not a posynomial

x1/x2 is a monomial thus also a posynomial.

The optimization problem can be framed as

min f0(x)

GP s.t fi(x) ≤ 1 i = 1, · · · , n

hj(x) = 0 j = 1, · · · , m

x ∈ R

x ≥ 0

where fi(x) is posynomial and hj(x) is a monomial.

Quick example: Consider a general maximization problem

max
x2

yz

s.t 1 < x < 5

2 < y < 4

y2 + 2xy + 5
z2

x
+ x <

√
y

x

z
= y2

x, y, z ∈ R; x, y, z > 0

The problem can be equivalently represented (in standard form) as

min x−2yz

s.t x−1 ≤ 1
1

5
x ≤ 1

2y−1 ≤ 1

y
3

2 + 2x
1

2 + 5z2x−1y− 1

2 + xy− 1

2 ≤ 1

xz−1y−2 ≤ 1

98

4.4 Cone Programming

In the case of linear programming (Primal problem) in standard form we had

min z : cT x

s.t Ax = b

x ≥ 0

Now, with conic programming we replace the condition by requiring that x ∈ K.

The primal form of conic program:

inf z : cT x

s.t Ax = b

x ∈ K

K is a set such that if x, y ∈ K then αx + βy ∈ K for α, β ≥ 0.

Some commonly used cones using in conic programming

1. The non-negative orthant, K = {x ∈ Rn : x ≥ 0}.

2. The second order cone Ksoc = {x ∈ R2 : x2
n ≥

n−1∑

i=1

x2
i , xn ≥ 0} which is also

called Lorentz cone or the ice cream cone.

3. The positive semi-definite cone K = {X ∈ RN : XT = X, vT Xv ≥ 0∀v ≥
0∀v ∈ Rn}. Note that X is a symmetric matrix and our conic program becomes

inf z :
∑

cijxij

s.t
∑

ij

aij(k)xij = bk k = 1, . . . , m

xij ∈ K

99

4.5 Semi-definite Programming

Semi-definite programming is another significant milestone in the general theory of

optimization the term was coined in 1990’s and has been an active area of research

since then.

Semi-definite programming as a generalization of linear programming enables us to

specify in addition to linear constraints a set of ‘semi-definite’ constraints, special

form of nonlinear constraints. Starting with the case of linear programming we know

that a linear optimization problem is framed as

min c · x

s.t ai · x = bi i = 1, · · · , m

LP x ∈ ℜn
+

x1, x2 ≥ 0

max
m∑

i=1

yibi

s.t
m∑

i=1

yiai + s = c

LD x ∈ ℜn
+

x1, x2 ≥ 0

Duality gap: c · x −
m∑

i=1

yibi = (c · x −
m∑

i=1

yiai) · x=s · x ≥ 0.

Definition: if X is an n × n matrix then X is positive semi-definite matrix if

vT Xv ≥ 0 ∀ v ∈ ℜn

and positive definite matrix if vT Xv > 0

S
n: set of n × n symmetric matrices.

S
n
+: set of positive semi-definite n × n symmetric matrices. X < 0.

S
n
++: set of positive definite n × n symmetric matrices. X ≻ 0.

X < Y ⇒ X − Y < 0

For a symmetric matrix A, the following statements are equivalent

• A < 0

100

• All eigenvalues of A are non-negative.

• A = CT C, where C ∈ R
m×n

Semi-definite Cone:

K is a closed convex cone if

x, w ∈ K ⇒ αx + βw ∈ k, α, β ≥ 0

K is a closed set.

w
x

Remark 1: Sn
+ = {X ∈ Sn|X < 0} is a closed convex cone in ℜn2

of dimension

n × (n + 1)/2. Proof: Suppose that X, W ∈ Sn
+ ∀α, β ≥ 0, ∀v ∈ ℜn

vT (αX + βW)v = αvT Xv + βvT Wv ≥ 0

where α · X + β · W ∈ Sn
+.

Properties of Symmetric Martix:

X ∈ Sn ⇒ X = QDQT where Q is orthonormal i.e. QT = Q−1, D is a diagonal

matrix. The columns of Q form a set of n orthogonal eigenvectors of X, whose

eignenvalues are the corresponding entries of D.

Facts of Symmetric Matrices

• If X ∈ Sn, then X = QDQT for some orthonormal matrix Q and some

diagonal matrix D. (recall that Q is orthonormal means Q−1 = QT).

• if X = QDQT as above, then the columns of Q form a set of n orthogonal

eigenvectors of X whose eigen values correspond to the entries of diagonal

matrix D.

101

• X < 0 if and only if X = QDQT where eigenvalues (i.e. diagonals of D) are

all non-negative.

• X ≻ 0 if and only if X = QDQT where eigenvalues (i.e. diagonals of D) are

all positive.

• M is a symmetric, then det(M) = Πn
j=1λj.

• X < 0 then Xii ≥ 0, i = 1, · · · , n.

• X < 0 and if Xii = 0, then Xij = Xji0 for all j = 1, · · · , n.

• Consider matrix M defined as

M =




P v

vT d





where P ≻ 0, v is a vector , d is a scalar then M < 0 if and only if d−vT P −1v ≥
0.

• for a given column vector a, the matrix X = aaT is a symmetric positive

semi-definite i.e. X = aaT
< 0

Linear function of X

if C(X) is a linear function of X, then C(X) can be written as C ∗ X, where

C ∗ X :=
n∑

i=1

n∑

j=1

CijXij (4.1)

if X is a symmetric matrix, wlog matrix C is also symmetric

Semi-definite Program:

min C ∗ X

s.t Ai ∗ X = bi i = 1, · · · , m

SDP X < 0

102

A1 =








1 0 1

0 3 7

1 7 5








A1 =








0 2 8

2 6 0

8 0 4








C =








1 2 3

2 9 0

3 0 7







, b1=11 and b2 = 19

X =








x11 x12 x13

x12 x22 x23

x13 x23 x33








C ∗ X = x11 + 4x12 + 6x13 + 9x22 + 0x23 + 7x33

min x11 + 4x12 + 6x13 + 9x22 + 0x23 + 7x33

s.t x11 + 2x13 + 3x13 + 2x21 + 9x22 + 0x23 + 7x33 = 11

s.t 0x11 + 4x12 + 16x13 + 6x22 + 0x23 + 4x33 = 19







x11 x12 x13

x12 x22 x23

x13 x23 x33







< 0

SDP looks remarkably similar to the linear program. However, the standard LP

constraints that x must lie in the non-negative orthant is replaced by the constraint

that the variable X must lie in the cone of positive semi-definite matrices. Just as

x ≥ 0 states that each of the n components of x must be non-negative, it may be

helpful to think that X < 0 as stating that each of the n eigenvalues of X must be

non-negative. It is easy to see that a linear program LP is a special instance of SDP.

Semi-definite Programming Duality

The dual problem of SDP is defined as:

max
m∑

i=1

yibi

SDD s.t
m∑

i=1

yiAi + S = C

S < 0

One convenient way of thinking about this problem is as follows. Given multipliers

y1, · · · , ym, the objective is to maximize the linear function
m∑

i=1

yibi. The constraints

of SDD state that the matrix S defined as

S = C −
m∑

i=1

yiAi

103

must be postive semi-definite. That is

C −
m∑

i=1

yiAi < 0

Construction of the dual of the problem presented earlier

max 11y1 + 19y2

s.t y1








1 0 1

0 3 7

1 7 5








+ y2








0 2 8

2 6 0

8 0 4








+ S =








1 2 3

2 9 0

3 0 7








SDP S < 0

which can be written as

max 11y1 + 19y2

s.t y1








1 − y1 − 0y2 2 − 0y1 − 2y2 3 − 1y1 − 8y2

2 − 0y1 − 2y2 9 − 3y1 − 6y2 0 − 7y1 − 0y2

3 − y1 − 8y2 0 − 7y1 − 0y2 7 − 5y1 − 4y2








SDP S < 0

According to the authors it is often easier to see and work with a semi-definite pro-

gram when it is presented in dual SDD, since the variables are the m multipliers

y1, · · · , ym.

As in linear programming, we can switch from one format of SDP to any other for-

mat with great ease, and there is no loss of generality in assuming particular specific

format for the primal and the dual.

SDP for Convex Quadratically Constrained Quadratic Pro-

gramming:

A convex quadratically constrained quadratic program is a problem of the form

min xT Q0x + qT
0 x + c0

QCQP s.t xT Qix + qT
i x + ci ≤ 0 i = 1, · · · , m

Q0, Qi < 0 i = 1, · · · , m

If we can factor each Qi in MT
i Mi for some matrix Mi. Then the optimization

problem can be reformulated as

104

min
x,θ

θ

QCQP s.t




I M0x

xT MT
0 −c0 − qT

0 x + θ



 < 0

QCQP s.t




I Mix

xT MT
i −ci − qT

i x + θ



 < 0 i = 1, · · · , m

Q0, Qi < 0 i = 1, · · · , m

SDP for Second order Cone Programming

A second order cone optimization problem (SOCP) is an optimization problem of

the form:

min cT x

SOCP s.t Ax = b

‖Qix + di‖ ≤ (gT
i x + hi) i = 1, · · · , K

where ‖v‖ is the standard Euclidean norm i.e. ‖v‖2 :=
√

vT v. The norm constraints

in SOCP are called the ‘second order cone constraints’. The constraints are convex.

Since

‖Qx + d‖ ≤ (gT x + h) ⇐⇒



(gT x + h)I (Qx + d)

(Qx + d)T gT x + h



 < 0 (4.2)

105

Chapter 5
Introduction to Convex Optimization

5.1 Convex function

A function f : R
n → R is convex if dom f is a convex set and if for all x and y ∈

dom f and θ with 0 ≤ θ ≤ 1, we have

f(θx + (1 − θ)y) ≤ θf(x) + (1 − θf(y)) (5.1)

geometrically, this inequality means that the line segment between (x, f(x)) and

(y, f(y)), which is a chord from x and y lies above the graph of f . A function

f is called strictly convex if strict inequality holds in (5.1) whenever x 6= y and

0 ≤ θ ≤ 1. We say f is concave if −f is convex, and strictly concave, and strictly

concave if −f is strictly convex.

(x, f(x))

(y, f(y))

For an affine function we always have equality in (5.1), so all affine (therefore also

linear) functions are both convex and concave. Conversely, any function that is

convex and concave is also affine.

106

5.1.1 Affine Sets

A set C ⊆ R
n is affine if the line through any two distinct points in C lies in C, i.e.

if for any x1, x2 ∈ C and θ ∈ R, we have θx1 + (1 − θ)x2 ∈ C. In other words C

contains the linear combination of any points in C, provided the coefficients in the

linear combination sum to one.

θ = 0

θ=0.6

θ=1.0
θ=1.2

θ=− 0.2x2

x1

How to Check if a function is convex?

A twice-differentiable function of many variables is concave if and only if second

derivative is non-positive everywhere. similarly

A twice-differentiable function of many variables is convex if and only if second

derivative is non-negative everywhere.

For f(·) is a twice differentiable function of n-variables. The Hessian of f(·) at

a vector x is

H(x) =











f ′′
11(x) f ′′

12(x) · · · f ′′
1n(x)

f ′′
21(x) f ′′

22(x) · · · f ′′
2n(x)

...
... · · · ...

f ′′
n1(x) f ′′

n2(x) · · · f ′′
nn(x)











(5.2)

• f(x) is concave if and only if H(x) is negative semidefinite for all x ∈ S.

• if H(x) is negative definite for all x ∈ S then f(·) is strictly concave.

• f(x) is convex if an only if H(x) is positive semidefinite for all x inS.

• if H(x) is positive definite for all x ∈ S then f is strictly convex.

107

A

D

B

C

x2

x1

B
A

C

x2

x1

x2

x1

A
B

C

D

x1

x2

x

y

x1

x2

x

y

x1

x2

x

y

x1

x2

x

x1

x2y

z

x2

x1

x2

x1

x1

x2

x1 x2

Why Convex functions are so important

All linear and affine functions are convex (and concave). Quadratic functions can

also we convex (or concave). Some more operations which yield in convex functions

are

• Exponential e(ax) is convex on R for any a ∈ R.

• Powers xa is convex on R++ when a ≥ 1 or a ≤ 0 and concave 0 ≤ a ≤ 1.

• power of absolute value |x|p for p ≥ 1 is convex on R.

• logarithm log x is concave on R++.

108

5.1.2 Epigraph

The graph of a function f : Rn → R is defined as

{(x, f(x))|x ∈ dom f}

which is a subset of Rn+1. The epigraph of a function f : Rn → R is defined as:

epi f = {(x, t)|x ∈ dom f, f(x) ≤ t},

which is a subset of Rn+1. ‘Epi’ means ‘above’ so epigraph means above the graph.

epif

f

The link between convex sets and convex functions is via the epigraph: A convex

function is convex only if epigraph is a convex set. A function is concave if any only

if its hypograph, defined as

hypo f = {(x, t)|t ≤ f(x)},

is a convex set.

5.2 Operations that preserve convexity

Non-negative weighted sums

Evidently if f is a convex function and α ≥ 0 then function αf is convex. If f1 and

f2 are both convex functions then so is their sum f1 + f2. Combining non-negative

scaling and addition, we see that the set of convex functions is itself a convex cone;

109

A non-negative weighted sum of convex functions

f = w1f1 + · · · + wnfn

is convex, similarly a non-negative weighted sum of concave functions is concave.

These properties extend to infinite sums and integrals as well. For example if f(x, y)

is convex in x for each y ∈ A and w(y) ≥ 0 for each y ∈ A, then the function g

defined as

g(x) =
∫

A
w(y)f(x, y)dy

is convex in x if such integral exists.

Composition with affine mapping

suppose f : Rn → R, A ∈ R
n×m, and b ∈ R

n. Define g : Rm → R by

g(x) = f(Ax + b)

with dom g = {x|Ax + b ∈ dom f}. Then if f is convex, so is g, if f is concave, so

is g.

Composition

Consider h : Rk → R and g : Rn → R
k that guarantee convexity or concavity of

their composition f = h ◦ g : Rn → R is defined by

f(x) = h(g(x)), dom f = {x ∈ dom g|g(x) ∈ dom h}

this implies:

f is convex if h is convex and non-decreasing, and g is convex,

f is convex if h is convex and non-increasing, and g is concave,

f is concave if h is concave and non-decreasing, and g is concave,

f is concave if h is concave and non-increasing, and g is convex,

Some further implications:

if g is convex then exp(g(x)) is convex

if g is concave and positive, then log(g(x)) is concave

if g is concave and positive, then 1/g(x) is convex

if g is convex and non-negative and p ≥ 1, then g(x)p is convex.

if g is convex then − log(−g(x)) is convex on x|g(x) < 0.

110

Perspective

if f : Rn → R, then the perspective of f is the function g : Rn+1 → R defined by

g(x, t) = tf(x/t)

with domain

domg = {(x, t)|x/t ∈ domf, t > 0}

The perspective operation preserves convexity: if f is a convex function, then so is

its perspective function g. Similarly if f is concave , then so is g.

111

Chapter 6
Optimization Algorithms

6.1 Particle Swarm Optimization

6.2 Genetic Algorithm

Non-negative weighted sums

Evidently if f is a convex function and α ≥ 0 then function αf is convex. If f1 and

f2 are both convex functions then so is their sum f1 + f2. Combining non-negative

scaling and addition, we see that the set of convex functions is itself a convex cone;

A non-negative weighted sum of convex functions

f = w1f1 + · · · + wnfn

is convex, similarly a non-negative weighted sum of concave functions is concave.

These properties extend to infinite sums and integrals as well. For example if f(x, y)

is convex in x for each y ∈ A and w(y) ≥ 0 for each y ∈ A, then the function g

defined as

g(x) =
∫

A
w(y)f(x, y)dy

is convex in x if such integral exists.

112

Composition with affine mapping

6.3 Ant Colony Optimization

if f : Rn → R, then the perspective of f is the function g : Rn+1 → R defined by

g(x, t) = tf(x/t)

with domain

domg = {(x, t)|x/t ∈ domf, t > 0}

The perspective operation preserves convexity: if f is a convex function, then so is

its perspective function g. Similarly if f is concave , then so is g.

113

