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Chapter 1
Introduction

The objective of this chapter / course is to introduce audience with algebra

of set theory, axioms of probability, conditional probability, Baye’s rule and

independent events

A⃝ Set Theory D⃝ Axioms of Probability

B⃝ Events & Sample Space E⃝ Other Features

C⃝ Sample Space / Events E⃝ Conditional Probability

Definition

The study of probability stems from the analysis of certain games of chance, and it

has found applications in most branches of science and engineering. In this chapter

the basic concepts of probability theory are presented. Probability Model: three

components are (a) the sample space, (b) events, and (c) probabilities of events.
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Set Theory

A set is a collection of objects, e.g. A set of students in a probability class. A set is

defined by enumeration

A = {Ali, Aliya, Akhtar, Aasia}

or by description

A = {Students: each student enrolled in probability class.}

some more examples

B = {1, 2, 3, . . . } enumeration

B = {I:I is an integer and I ≥ 1} description

Each object in the set is called element each element is distinct. Ordering within

the set is not important. i.e. {1, 2, 3} and {1, 3, 2} are equivalent. Sets are said to

be equal if they contain same elements.

Consider the set of all outcomes of tossing a die. This is

A = {1, 2, 3, 4, 5, 6}

The numbers 1, 2, 3, 4, 5, 6 are its elements, that are distinct. The set of integer

numbers from 1 to 6 or B = {I : 1 ≤ I ≤ 6} is equal to A. The set A is also the

universal set S since it contains all the outcomes.

Size of Sets

Three different types of sets

A =
{

1
8 ,

1
4 ,

1
2 , 1

}
Finite Set- Discrete

B =
{

1,
1
2 ,

1
3 ,

1
4 , . . .

}
Countably infinite set - discrete

C =
{

x : 0 ≤ x ≤ 1
}

Infinite set - discrete



0 1 0 1

1st2nd3rd

element

0 1

The possible outcomes comprise the elements of set S = {1, 2, 3, 4, 5, 6}. We may be

interested in particular outcome of the die tossing experiment; other times we might

be not interested in a particular outcome of the die tossing experiment. Simplest

type of events are the ones that contain only a single outcome such as E1 = {1},

E2 = {2}; a complex event contains multiple events Eeven = {2, 4, 6}. Disjoint sets

such as {1, 2} and {3, 4} are said to be mutually exclusive.

set theory Probability theory Probability Symbol

Universal Set Sample space S

Element Outcome (sample point) s

Subset Event E

disjoint set mutually exclusive events E1 ∩ E2 = ∅

null set impossible event ∅

simple set simple event E = {s}

Theory of probability assigns probabilities to event. What is the probability that the

tossed die will produce an even outcome? denoting this probability by P [Eeven], we

would intuitively say it is 1/2 since there are 3 chances out of 6 to produce an even

outcome. P is a probability function or a function that assigns a number between 0

and 1 to sets.

The probability function must assign a number to every event, or every set. Exam-

ples:

• For tossing a coin:

E1 = {H} E2 = {T}

E3 = ∅ E4 = {S}



• For tossing a fair die:

E0 = ∅ E1 = {1} E2 = {2} E3 = {3} E4 = {4}

E5 = {5} E6 = {6}

E12 = {1, 2} E13 = {1, 3} E14 = {1, 4} E15 = {1, 5} E16 = {1, 6}

. . . E123 = {1, 2, 3} . . .

. . . . . . E1···6 = S

There are a total of 64 events, we must be table to assign probabilities to all of these

events.

Example

For the case of a fair die. Let us determine the probability that die comes up either

less than or equal to 2 or equal to 3.

P{{1, 2} ∪ {3}} = P [{1, 2}] + P [{3}]

= 2
6 + 1

6 = 1
2

1.1 Experiment,Sample Spaces and Events

1. Experiment (experiment of chance, not necessarily a designed experiment), a

process whose outcomes are uncertain. i.e. A non-deterministic process.

Examples: Roll of a dice, tossing a coin, drawing a card from a deck.

2. Sample Space: S is a set that contains all possible outcomes from the experi-

ment. In some cases, S contains outcomes that are not possible.

(a) The number of outcomes in the sample space can be finite or infinite.

(b) Infinite sample space can be countable or uncountable. A sample space

is countable if the outcomes can be associated with the integers 1,2,· · · .



Example Find sample space for the experiment of tossing coin (a) once (b)

twice.

a. There are two possible outcomes, heads or tails. Thus

S = {T, H}

b. There are four possible outcomes. They are pair of heads and tails. Thus

S = {HH, HT, TH, TT}

Example Some examples with infinite sample space.

a. Tossing a coin repeatedly and counting the number until first head appears

S = {1, 2, 3, . . . }

b. Sample space for experiment measuring (in hours) the lifetime of a transis-

tor.

clearly possible outcomes are all non-negative numbers.

S = {t 0 ≤ t ≤ ∞}

3. Event: A subset of sample space.

(a) A simple event contains only one outcome. A simple event is denoted by

s.

(b) A compound event contains two or more outcomes . Compound events

are denoted by capital letters.

Very simply the probability is defined as

Probability of an Event = No. of Favorable Outcomes
No. of Total Outcomes



1.2 Algebra of Events

1. Relationships and definitions

(a) Inclusion A ⊂ B means s ∈ A ⇒ s ∈ B, where s is an outcome in S.

(b) Equality: A = B means that A ⊂ B and B ⊂ A.

(c) Complement: A is the set {s ∈ S,S /∈ A}

2. Set operations

(a) Union: A ∪ B is the set of all the outcomes that are in A and/or B.

A ∪ B = {c : c ∈ A or c ∈ B}

(b) Intersection: A ∩ B is the set of all the outcomes that are in A and B.

A ∪ B = {c : c ∈ A and c ∈ B}

(c) Disjoint Sets: Two sets A and B are called disjoint or mutually exclusive

if they contain no common element that is if A ∩ B = ∅.

(d) Commutative Operations: A ∪ B = B ∪ A and A ∩ B = B ∩ A.

(e) Subtractive Operation:A\B consists of all the outcomes of A except B

(f) Associative Operation:(A ∪ B) ∪ C = A ∪ (B ∪ C) and (A ∩ B) ∩ C =

A ∩ (B ∩ C).

(g) Distributive Operations:A∩(B∪C) = (A∩B)∪(A∩C) and A∪(B∩C) =

(A ∪ B) ∩ (A ∪ C)



A B

S

S

S

A

A B

A
B

A ∪B A ∩B

B ⊂ AA

The definition of union and intersection of two sets can be extended to an

finite number of sets as follows
n⋃

i=1
Ai = A1 ∪ A2 ∪ · · · ∪ An

= {c : c ∈ A1 or c ∈ A2 or . . . c ∈ An}
n⋂

i=1
Ai = A1 ∩ A2 ∩ · · · ∩ An

= {c : c ∈ A1 and c ∈ A2 and . . . c ∈ An}

(h) Demorgan’s Laws

(A ∪ B) = A ∩ B equivalently

(A ∩ B) = (A ∪ B)



A ∩ B = A ∪ B A ∪ B = A ∩ B

A ∩ B A ∪ B

A

A

A

A

A A

B

B

B

B

A ∪ B A ∩ B



and generally speaking

A ∩
(

n⋃
i=1

Bi

)
=

n⋃
i=1

(A ∩ Bi)

A ∩
(

n⋃
i=1

Bi

)
=

n⋂
i=1

(A ∩ Bi)

The extension of DeMorgan’s Law

(
n⋃

i=1
Ai

)
=

n⋂
i=1

(Āi)(
n⋂

i=1
Ai

)
=

n⋃
i=1

(Āi)

3. Identities

Key Properties of Sets
1. S = ∅ 5. S ∩ A = A

2. ∅ = S 6. A ∪ A = S

3. A = A 7. A ∩ A = ∅

4. S ∪ A = S

A relative frequency definition of probability:

Suppose that the random experiment is repeated n times. If event A occurs n(a)

times, then the probability of event A, denoted P (A) is defined as

P (A) = lim
n→∞

n(A)
n

where n(A)/n is called the relative frequency of event A. Note that limit may not

exist, and in addition, there are many situations in which the concept of repeatability

may not be valid. It is clear that for any event A, the relative frequency of A will

have the following properties:



i. 0 ≤ n(A)/n ≤ 1 ‘0’ if no occurrences and ‘1’ if occurs all the time.

ii. If A and B are mutually exclusive events, then

n(A ∪ B) = n(A) + n(B)

and
n(A ∪ B)

n
= n(A)

n
+ n(B)

n

1.3 Axioms of Probability

(a) 0 ≤ P (A) ≤ 1 for any event A.

(b) P (S) ≡ 1

(c) Additivity: If A1, A2 · · · are pairwise disjoint events,i.e.

Ai ∩ Aj = ∅ ∀ i ̸= j

then,

P (A1 ∪ A2 ∪ · · · ) = P (A1) + P (A2) + · · ·

In case if there are finitely many events A1, A2, · · · , An then we have

P (A1 ∪ A2 ∪ · · · An) =
n∑

i=1
P (Ai)

Implication of the Axioms

• P (A) = 1 − P (A)

P (S) = 1 = P (A ∪ A) = P (A) + P (A) ⇒ P (A) = 1 − P (A).

Corollary-1:P (A) ≤ 1.

Corollary-2:P (∅) = 0.

Corollary-3:If A and B are disjoint, then P (A ∩ B) = 0.



• If A ⊆ B, then P (A) ≤ P (B).

Proof A ⊂ B ⇒ B = (A ∩ B) ∪ (A ∩ B) ⇒ P (B) = P (A) + P (A ∩ B) ≥ P (B)

because A is disjoint from A ∩ B.

• P (A ∪ B) = P (A) + P (B) − P (A ∩ B) for any events A and B

Proof:

Note that A = (A ∩ B) ∪ (A ∩ B) and B = (A ∩ B) ∪ (A ∩ B). Accordingly

P (A) = P (A∩B)+P (A∩B) and P (A∩B) = P (A)−P (A∩B) because A∩B

is disjoint from A∩B Similarly, P (B) = P (A∩B)+P (A∩B) and P (A∩B) =

P (B) − P (A ∩ B). Lastly note that A ∪ B = (A ∩ B) ∪ (A ∩ B) ∪ (A ∩ B).

These three events are mutually disjoint, so

P (A ∪ B) = P (A ∩ B) + P (A ∩ B) + P (A ∩ B)

= P (A ∩ B) + P (A) − P (A ∩ B) + P (B) − P (A ∩ B)

= P (A) + P (B) − P (A ∩ B)

Corollary-4: If A ⊆ B, then P (A) ≤ P (B) Assume A1 = A, A2 = B\A Again

we have A1 ∩ A2 = 0(since the elements of B\A are by definition not in A),

and A1 ∪ A2 = B. So by Axiom 3,

P (A1) + P (A2) = P (A1 ∪ A2) = P (B)

In other words,P (A) + P (B\A) = P (B) Now P (B\A) ≥ 0 by Axiom 1; so

P (A) < P (B)

1.4 Inclusion Exclusion Principle

Proposition:

P (A ∪ B) = P (A) + P (B) − P (A ∩ B)

This proposition can be proved from the axioms using Venn Diagram as a guide, see

that A ∪ B is made up of three parts, namely

A1 = A ∩ B, A2 = A\B, A3 = B\A



S

A1
A3A3

Indeed we do have A∪B = A1 ∪A2 ∪A3, since anything in A∪B is in both these sets

are just the first of just the second. Similarly we have A1 ∪A2 = A and A1 ∪A3 = B.

The sets A1, A2, A3 are mutually disjoint.

P (A) = P (A1) + P (A2),

P (B) = P (A1) + P (A3),

P (A ∪ B) = P (A1) + P (A2) + P (A3),

from this we obtain

P (A) + P (B) − P (A ∩ B) = (P (A1) + P (A2)) + (P (A1) + P (A3)) − P (A1),

= P (A1) + P (A2) + P (A3),

= P (A ∪ B)

This rule can be extended to multiple variables



A B

C

A ∩ B ∩ C

A ∩ B

A ∩ C B ∩ C

The inclusion exclusion principle for 3 variables is defined as

P (A∪B∪C) = P (A)+P (B)+P (C)−P (A∩B)−P (A∩C)−P (B∩C)+P (A∩B∩C)

generalizing this to n-variable case we obtain.

P
( n⋃

i=1
Ai

)
= P (A1) + · · · + P (An) −

∑
i ̸=j

P (Ai ∩ Aj)

+
∑

i ̸=j ̸=k

P (Ai ∩ Aj ∩ Ak) − . . . (−1)n−1P (Ai ∩ · · · ∩ An)



A B

C

A B

C

A B

C

A B

C

A B

C

A B

C

A B

C

A B

C

A B

C

A B

C

A B

C

A B

C



Disjoint or Mutually Exclusive Events

Sets A and B in S are said to be mutually exclusive or disjoint if A ∩ B = ∅. Sets

A1, A2 · · · , An are said to be disjoint if AiAj = ∅ for every i ̸= j. Further more if A

and B are in S, then

1. A = AB ∪ AB̄.

2. AB ∩ AB̄ = ∅.

3. A ⊂ B, then AB = A and A ∪ B = B

1.4.1 Sampling with and without replacement

We draw an object from a Box, we have a choice to replace or not replace the object

back in the box before a redraw. In the first case a particular object can come up

again and again, whereas in second case it can come up only once.

The probability for

sampling with/without

replacement are funda-

mentally different.

Note!

Sampling with replacement is system with infinite population. Theoretically speak-

ing a large population can be considered as infinite population.

Example: Drawing from Urn (with / without replacement)

2 balls are selected at random with replacement from the urn containing 8 blue balls

and 6 red balls.

Determine the probability of drawing 0, 1 or 2 red balls



Without Replacement

B

R

B

R

R

B

8
14

6
14

7
13

6
13

5
13

8
13

With Replacement

B

R

B

R

R

B

8
14

6
14

8
14

6
14

6
14

8
14

Insert the example of urn to establish the two different sets of sample spaces. -

Ordered Pairs

-Unordered Pairs

Probability in terms of Odds

(i) If event A has probability P (A) and event B has probability P (B) then

Odds of A to B = P (A)
P (B)

Provided that P (B) > 0. Note that odds is not a probability. Rather, it’s a

ratio of probabilities.

(ii) Odds of a single event, A, is defined as the odds of A to A. That is

Odds of A to B = P (A)
P (A)

= P (A)
1 − (P (A))

Provided that P (A) < 1

1.5 Experiment with Symmetries

1. Equally Likely Outcomes

(a) If the outcomes in a finite sample space, S = {s1, · · · , sN} are equally

likely, then each has probability 1/N for i = 1, · · · , N .



(b) Definition:If an object is drawn at random from a finite population of N

objects, then the objects are equally likely to be selected.

(c) If an event A consists of a subset of k outcomes in a sample space of N

equally likely outcomes, then P (A) = k/N .

1.6 Conditional Probability

We are often interested in the probability of an event given another event because

one might be able to learn about the former by observing the latter. This is called

the conditional probability and is defined below.

Definition: If P (B) > 0, then the conditional probability that the event A occurs

given that the event B has occurred is defined as

P (A|B) = P (A ∩ B)
P (B) P (B) > 0

⇒ P (A ∩ B) = P (A|B) · P (B)

Similarly we can define P (B|A).

The conditional probability can be very tricky as the following examples show.



Example

1. (Monty Hall) In an American game show, called Let’s Make a Deal, the shows

host, Monty Hall, shows a player three closed doors; behind one is a car, and

behind each of the other two is a goat. The player is allowed to open one door,

and will win whatever is behind the door. However, after the player selects a

door but before opening it, Monty Hall (who knows whats behind the doors)

opens another door, revealing a goat. Monty Hall then offer the player an

option to switch to the other closed door. Does switching improve the players

chance of winning the car?

G−2G−1

G−2G−1

G−2G−1

Car

Car

Car

Car

Car

Car

Car

G−1

G−1

G−1

G−1

G−1

G−2

G−2

G−2

G−2

G−2Car

Win

Win

Lose

Lose

No Switch

1/6

1/6

1/3

1/3

1/3

2/3

Contestent Host



2. (Gender of Twins) A couple is expecting twins. In a ultrasound examination,

the technician was only able to determine that one of the two was boy. What

is the probability that both are boys? During the delivery, the baby that was

born first was a boy. What is the probability that both are boys?

1st Child

♂ ♀

2n
d

C
hi

ld ♂ 1
2 · 1

2
1
2 · 1

2

♀ 1
2 · 1

2
1
2 · 1

2



3. (Simpsons Paradox) A political scientist has performed a randomized exper-

iment to determine the relative efficacy of two get-out-of-the vote strategies,

with the following results.
Partisans Non-Partisans

Visit−Phone Visit−Phone

Voted 200−10 19−1000

Did not vote 1800−190 1−1000

And some more examples:



Example 1

We have 10 marbles; 4 red and 6 blue, and take two of them randomly. We define

the events A the 1st marble is red and B the 2nd marble is red . What is the

probability that both marbles are red P (A ∩ B)?

Since we can take the marbles out one at a time, the probability of 1st marble being

red is 4/10. Getting two read marbles then can be seen as the conditional probability

of getting a second red marble P (B|A), given the first marble is red. After removal

of the first marble, the sample space has changed: we now have 3 red and 6 blue

marbles, so the probability of getting red one now is P (B|A) = 3/9.

P (A ∩ B) = P (A) · P (B|A) = 4/10 × 3/9 = 2/15

R

B

B

BR

R

R

6
10

6
10

· 5
9

6
10

· 4
9

4
10

4
10

· 3
9

4
10

· 6
9

Example 2

A typical student appearing in a MCQ exam, generally, knows correct answers to 75

questions out of 100. For the remaining 25 questions he picks randomly 1 of the 5

choices. What is the probability for event that student guesses the answer correctly.
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1.7 Product Rule of Probability

P (A ∩ B) = P (B|A) · P (A)

Generalization of the product Rule of Probability

If P (A1 ∩ · · · ∩ An−1) ̸= 0, then:

P (A1 ∩ · · · ∩ An) = P (A1) · P (A2|A1) · P (A3|A1 ∩ A2) · · · P (An|A1 ∩ · · · ∩ An−1)

The multiplication rule implies that the probability of all the events (A1 ∩ · · · ∩ An)

happening is equal to the probability of event A1 times the probability of event A2

given A1 and so forth.

⇒ Also known as Chain-rule of probability, Iterative conditional probability.

1.8 Law of Total Probability

For events A1, A2, · · · , An form a partition of the sample space if the following two

conditions hold

(a) The events are pairwise disjoint, that is Ai ∩ Aj = ∅ and i ̸= j, for any pair of

events Ai and Aj

(b) A1 ∪ A2 ∪ · · · ∪ An = S.



Let A1, A2, · · · , An form a partition of the sample space with P (Ai) ̸= 0 ∀i, and let

B be any event. Then

P (B) =
n∑

i=1
P (B ∩ Ai) =

n∑
i=1

P (B|Ai) · P (Ai)

Proof: By definition, P (B|Ai) = P (B ∩ Ai)/P (Ai). Multiplying up, we find that

P (B ∩ Ai) = P (B|Ai) · P (Ai)

Now consider the events B ∩ A1, B ∩ A2, · · · , B ∩ An. These events are pairwise

mutually disjoint: for any outcome lying in both B ∩ Ai and B ∩ Aj would lie both

in Ai and Aj, and by assumption there are no such outcomes. Moreover, the union

of all these events is B, since every outcomes lies in one of the Ai. So, by Axiom 3

we conclude that
n∑

i=1
P (B ∩ Ai) = P (B)

P(B)

A7

A1

A2

A3
A5

A6A4

A8

A9

Example Consider the ice-cream salesman has to decide whether to order more

stocks for Eid holiday. He estimates that if weather is sunny, he has 90% chance of

selling all his stocks, if it is cloudy he has 60% chance of selling all his ice creams, if

it is rainy he has 20% chance of selling all his stocks. According to weather forecast,



the probability of sunshine is 30% the probability of cloud is 45% and probability

of rain is 25%.

Let

P (A1) = 0.3, P (A2) = 0.45, P (A3) = 0.25

let B is the event ‘salesman sells all his stock’, then according to the information

we have

P (B|A1) = 0.9, P (B|A2) = 0.6, P (B|A3) = 0.2

Then according to the theorem of total probability

P (B) = (0.9 × 0.3) + (0.6 × 0.45) + (0.2 × 0.25) = 0.59

Further more,

P (A) = P (A|B)P (B) + P (A|B)P (B)

1.9 Baye’s Rule

We prove Baye’s theorem starting from the definition of conditional probability. Let

A and B be two events

P (A|B) = P (B|A)P (A)
P (B|A)P (A) + P (B|A)P (A)

Proof:

P (A|B) = P (A ∩ B)
P (B) By definition of conditional probability

= P (B|A)P (A)
P (B) By multiplication rule

= P (B|A)P (A)
P (B ∩ A) + P (B ∩ A)

By Law of total probability

= P (B|A)P (A)
P (B|A)P (A) + P (B|A)P (A)

By multiplication rule

as required ♣.



1.10 Independent Events

It may happen that knowing that an event occurs does not change the probability

of another event.

Definition

Motivated by the discussion above, we say that two events A and B are independent

if

P (A ∩ B) = P (A)P (B)

Note that the independence is a notion that depends on the probability. Indepen-

dent and disjoint should not be confused. If two events are disjoint, then they are

independent only if atleast one of them has probability 0. Indeed, if they are disjoint

P (A∩B) = P (∅) = 0 so that P (A∩B) = P (A)P (B) only if P (A) = 0 or P (B) = 0.

We may extend the definition of independence to more than three events. The events

A1, A2, · · · , An are independent if and only if for every subset {Ai1 , Ai2 , · · · , Aik
}(2 ≤

k ≤ n) of these events,

P (Ai1 ∩ Ai2 ∩ · · · ∩ Aik
) = P (Ai1)P (Ai2) · · · P (Aik

)

i.e., we define an infinite set of events to be independent if and only if every finite

subset of the events is independent.

To distinguish between the mutual exclusiveness (or disjointness) and independence

of a collection of events we summarize as follows:

(a) If {Ai = 1, 2, · · · , n} is a sequence of mutually exclusive events, then

P

(
n⋃

i=1
Ai

)
=

n∑
i=1

P (Ai)

(b) If {Ai, i = 1, 2, · · · , n} is a sequence of independent events, then

P

(
n⋂

i=1
Ai

)
=

n∏
i=1

P (Ai)

This implies that P (Ai ∩ A2 ∩ · · · An) = P (A1)P (A2) · · · P (An) and vice versa



Properties of Independence

Proposition-1: If A and B are independent, then A and B are independent.

we are given that P (A ∩ B) = P (A) · P (B) and asked to prove that P (A ∩ B) =

P (A) · P (B) from a few pages ago, we know that P (A) = P (A ∩ B) + P (A ∩ B).

Thus,

P (A ∩ B) = P (A) − P (A ∩ B)

= P (A) − P (A) · P (B) Since A,B are independent

= P (A)(1 − P (B))

= P (A) · P (B)

Proposition-2: If A and B are independent, then A and B are independent.

Proposition-3: Let events A, B, C be mutually independent. Then A and B ∩ C are

independent, and A and B ∪ C are independent



Chapter 2
Random Variables

In this chapter, the concept of random variables is introduced. The main purpose

of using a random variables is so that we can define probability functions that make

it both convenient and easy to compute the probabilities of various events.

2.1 Random Variables

Definition:

Consider an experiment with sample space S.

1. Definition: A Random Variable is a characteristic of the outcome of an exper-

iment.

2. Notation: Use capital letters to denote random variable (rvs.). Example: X(s)

is a rv. Use small letters to denote the realization of the random variable.

3. A random variable X(s) is a single-valued real function that assigns a real

number called value of X(s) to each point s of S. Often we use single letter X

for this function in space of X(s).X() is rv and

x it’s value

Note!
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4. The sample space S is termed the domain of the r.v. X, and the collection of

all numbers (values of X) is termed as range of r.v. X.

5. Example: Consider the experiment of choosing a student at random from a

classroom. Then S = {Jack, Dolores, · · · }. Let X(s) be a characteristics of

student s. Then X(s) is a rv.

6. Types of random variables

(a) Catagorical versus Numerical

• X(s) = gender of selected student is catagorical random variable and

X(s2) = x2 =“Female” is a realization of the random variable.

• Y (s) = age of selected student is a numerical random variable and

Y (s1) = Y1 = 19.62 is a realization of the random variable.

(b) Continuous versus Discrete

• If the possible value of a rv are countable then the rv is discrete.

• if possible value of a rv are contained in open subsets (or half open

subsets) of the real line, then the rv is continuous.

Physical Examples

Noise voltage at a given time and place, temperature at a given time and place,

height of the next person to enter the room, and so on.

Examples of function

• We pick a ball randomly from a bag and we note its weight X and its diameter

Y .

• We observe the temperature at a few different locations.

• We measure the noise voltage at different times.

• We track the evolution over time of the value of Cisco shares and we want to

forecast the future values.



• A transmitter sends some signal and receiver observes the signal it receives

and tries to guess which signal the transmitter sent.

Events defined by Random Variables

If X is a r.v. and x is a fixed real number, we can define the event (X = x) as

(X = x) = {s : X(s) = x}

Similarly, for fixed numbers x,x1 and x2, we can define the following events.

(X ≤ x) = {s : X(s) ≤ x}

(X > x) = {s : X(s) > x}

(x1 < X ≤ x2) = {s : x1 < X(s) ≤ x2}

These events have probabilities that are denoted by

P (X = x) = P{s : X(s) = x}

P (X ≤ x) = P (s : X(s) ≤ x)

P (X > x) = P (s : X(s) > x)

P (x1 < X ≤ x2) = P (s : x1 < X(s) ≤ x2)

2.2 Discrete Probability Distributions

1. Components of a Discrete Probability Model

(a) A countable sample space,S = {s1, s2, · · · }

(b) A non-negative number P (s) assigned to each outcome such that∑P (si) =

1.



2.3 Distribution Function

1. Definition: The distribution function or Cumulative Distribution Function

(cdf) of X is defined by

FX(x) = P (X ≤ x) − ∞ < x < ∞

Most of the information about a random experiment described by the r.v. X

is determined by the behavior of FX(x).

2. Properties of FX(x):

(i) 0 ≤ FX(x) ≤ 1

(ii) FX(x1) ≤ FX(x2) if x1 < x2

(iii) lim
x→∞

FX(x) = FX(∞) = 1

(iv) lim
x→−∞

FX(x) = FX(−∞) = 0

(v) lim
x→a+

FX(x) = FX(a+) = FX(a+) a+ = lim
0<ϵ→0

a + ϵ

Property (i) follows because FX(x) is a property. Property (ii) shows that

FX(x) is a nondecreasing function. Properties (iii) and (iv) follow from ele-

mentary definition of probability.

3. Determination of Probability from Distribution Function: From the definition

of distribution a few lines above, we can compute other probabilities such as

P (a < X ≤ b),P (x > a), and P (x < b).

P (a < X ≤ b) = FX(b) − FX(a)

P (X > a) = 1 − FX(a)

P (X < b) = FX(b−) b− = lim
0<ϵ→0

b − ϵ

2.4 Discrete Random Variables

1. Definition: Let X be a r.v. with cdf FX(x) changes values only in jumps (at

most a countable number of them) and is constant between jumps − that is



FX(x) is a staircase − then X is called a discrete random variable. Alter-

natively, X is a discrete r.v. only if its range contains a finite or countably

infinite number of points.

2. Probability Mass Function: Suppose that the jumps in FX(x) of a discrete r.v.

X occur at the points x1, x2, · · · , where the sequence may be either finite or

countably infinite, and we assume that xi < xj if i < j. Then

FX(xi) − FX(xi−1) = P (X ≤ xi) − P (X ≤ xi−1) = P (X = xi)

we define

pX(x) = P (X = x)

The function pX(x) is called the probability mass function (pmf) of the discrete

r.v. X.

3. Properties of pX(x)

(i) 0 < pX(xk) ≤ 1 k = 1, 2, · · ·

(ii) pX(x) = 0 if x ̸= xk(k = 1, 2, · · · )

(iii) ∑k pX(xk) = 1

The cdf FX(x) of a discrete r.v. X can be obtained by

FX(x) = P (X ≤ x) =
∑

xk≤x

pX(xk)

This function is also known as Probability mass function (pmf).

(a) The pmf can be an equation, a table or a graph that shows how probability is

assigned to possible values of a random variable.

(b) The distribution of probabilities across all possible values is called probability

distribution may be displayed as (a) a table (b) a graph (c) an equation.



2.5 Continuous Random Variables and Probabil-

ity Density Functions

1. Let X be a r.v. with cdf FX(s) is a continuous and also has a derivative

dFX(x)/dx which exists everywhere except at possible a finite number of points

and is piecewise continuous, then X is called a continuous random variable.

Alternatively, X is a continuous r.v. only if its range contains an interval

(either finite or infinite) of real numbers. Thus, if X is a continuous r.v. then

P (X = x) = 0

2. Probability Density Function let

fX(x) = FX(x)
dx

The function fX(x) is called the probability density function (pdf) of the con-

tinuous r.v. X.

3. Properties of fX(x)

(a) fX(x) ≥ 0.

(b)
∫∞

−∞ fX(x)dx = 1.

(c) fX(x) is piecewise continuous.

(d) P (a < X ≤ b) =
∫ b

a fX(x)dx.

The cdf FX(x) of a continuous r.v. X can be obtained by

FX(x) = P (X ≤ x) =
∫ x

−∞
fX(ξ)dξ

if X is a continuous r.v., then

P (a < X ≤ b) = P (a ≤ X ≤ b) = P (a < X < b)

=
∫ b

a
fX(x)dx = Fx(b) − Fx(a)



2.6 Median, Quartiles, Percentiles

Another measure commonly used for continuous random variables is median; this is

the value m such that “half of the distribution lies to the left of the m and half to

the right”. More formally, m should satisfy FX(m) = 1/2. It is not the same as the

mean or expected value.

In other words if a data sequence is sorted in ascending order and value at the middle

of the sequence is the ‘median’. In case if the sequence has even length, the median

is not unique, the median in this case is the average of the two center points. If

there is a value m such that the graph of y = fX(x) is symmetric about x = m,

then both the expected value and median of X are equal to m.

Quartile is value that represents 1/4th of the data. The lower quartile l and the

upper quartile u are similarly defined by

FX(l) = 1/4, FX(u) = 3/4

Thus, the probability that X lies between l and u is 3/4 − 1/4 = 1/2, so quartiles

give an estimate of how spread-out the distribution is. More generally, we define

nth percentile of X to be the value of xn such that

FX(Xn) = n/100,

i.e. The probability that X is smaller then xn is n%

25th percentile is the lower quartile, 50th percentile is the median

Reminder: If the c.d.f. of X is FX(x) and the p.d.f is fX(x),then

• Differentiate FX to get fX and integrate fX to get FX ;

• Use fX to calculate E(x) and V ar(X);

• Use fX to calculate P (a ≤ X ≤ b) (this is FX(b) − FX(a)), and the median

and the percentiles of X.



2.7 Expected Value and Variance and Moments

Let X be a discrete random variable which takes the values a1, · · · , an. The expected

value or mean of X (denoted as µ)is the value E(X) given by the formula

E(X) =
n∑

i=1
aiP (X = ai)

That is we multiply each value of X by the probability that X take that value,

and some these terms. The expected value is a kind of ‘generalized average’: if

each of the values is equally likely, so that each has probability 1/n, then E(X) =

(a1 + · · · + an)/n, which is just the average of the values.

There is another interpretation of the expected value in terms of mechanics. If we

put a mass Pi on the axis at position ai for i = 1, · · · , n, where Pi = P (X = ai),

the center of mass of all these masses is at the point E(x). If the random variable

X takes infinitely many value, say a1, a2, a3 · · · , then we define the expected value

of X to be infinite sum

µx = E(X) =
∞∑

i=1
aiP (X = ai)

Usually in practice we have random variables with finitely many values.

The variance of X is the number V ar(X) (denoted as σ2
x) is given by

σ2
x = V ar(X) = E(x2) − [E(x)]2

Here, X2 is just the random variable whose values are squares of the values of

X.Thus

E(X2) =
n∑

i=1
ai

2P (X = ai)

(or an infinite sum, if necessary). The next theorem shows that, if E(X) is a kind

of average of values of X, then V ar(X) is a measure of how spread-out the values

are around their average.



Proposition Let X be a discrete random variable with E(X) = µ. Then

V ar(X) = E((X − µ)2) =
n∑

i=1
(ai − µ)2P (X = ai)

V ar(X) = E((X − µ)2) =
n∑

i=1
(ai − µ)2P (X = ai)

=
n∑

i=1
(ai

2 − 2µai + µ2)P (X = ai)

=
(

n∑
i=1

(ai
2P (X = ai)

)
− 2µ

(
n∑

i=1
(aiP (X = ai)

)
+ µ2

(
n∑

i=1
P (X = ai)

)

Notice that the terms in the second terms contain just the definition of expected

value and third term contains a summation over all events, applying the definitions

to simplify we find,

E((X − µ)2) = E(X2) − 2µE(X) + µ2

= E(X2) − E(X)2

The nth moment of a r.v. X is defined by

E(Xn) =


∑

k Xn
k p(xk) X : discrete∫+∞

−∞ xnfx(x)dx X : continuous

Remarks

• The expected value of X always lies between the smallest and largest values

of X.

• The variance of X is never negative. From the definition of variance each of

the term in the summation form (ai −µ)2 (a square,hence non-negative) times

P (X = ai)(a probability hence non-negative).

• µ and σ2 are 1st and 2nd order moments of a random variable.

Proposition: Let C be a constant random variable with value c.Let X be any ran-

dom variable

(a) E(C) = c, V ar(C) = 0



(b) E(X + c) = E(X) + c, V ar(X + c) = V ar(X)

(c) E(cX) = cE(X), V ar(cX) = c2V ar(X)

Proof:

(a) The random variable C takes the single value c with P (C = c) = 1. So E(C) =

c · 1 = c. And also

V ar(C) = E(C2) − E(C)2 = 0

(b) This follows from previous lecture, we observe that the constant random variable

C and any random variable X are independent.( This is true because P (X =

a, C = c) = P (X = a) · 1). Then

E(X + c) = E(X) + E(C) = E(X) + c

V ar(X + c) = V ar(X) + V ar(C) = V ar(X)

(c) If a1, · · · , an are the values of X, then ca1, · · · , can are the values of cX,and

P (cX = cai) = P (x = ai) So

E(cX) =
n∑

i=1
caiP (cX = cai)

= c
n∑

i=1
aiP (X = ai)

= cE(X)

then

V ar(cX) = E(c2X2) − E(cX)2

= c2E(X2) − (cE(X))2

= c2(E(X2) − E(x)2)

= c2V ar(X)

Probability generating function

Let GX(x) be the Probability generating function of a random variable X. Then



1. [GX(x)]x=1 = 1

2. E(X) = [ d
dx

GX(x)]

3. V ar(X) = [ d2

dx2 GX(x)] + E(X) − E(X)2

Probability generating function is also known as characteristic equation of the prob-

ability distribution function. [not discussed here further]

1 µ = E{X} mean

2 σ2 = E{X2} − E2{X} variance

3 m3 = E

{(
X−µ

σ

)3
}

skewness

4 m4 = E

{(
X−µ

σ

)4
}

kurtosis

2.8 Counting and Permutation

If the sample space of the experiment S is a finite set, one can compute the probabil-

ities associated with each event by counting. In particular, consider an experiment

in which each of the finite number of outcomes is equally likely. In such a situation,

the probability of an event is equal to the number of outcomes that belong to the

event of interest divided by the total number of outcomes. The most basic method

of counting is so called the multiplication rule. Consider an experiment consisting

of two completely separate experiments. The sample space of the first experiment

has m outcomes i.e. S1 = {a1, a2, · · · , am}, whereas that of the second experiment

has n outcomes i.e. S2 = {b1, b2, · · · , bn}. Then, the sample space of the overall

experiment space S has m × n Extending this method to more complicated situa-

tions, we have the following three basic rules for counting when sampling without

replacement.

Theorem( Sampling without Replacement)



1. (Permutation) Consider an experiment in which k outcomes are sampled with-

out replacement from the pool of n distinct outcomes (k ≤ n). An ordered

arrangement of k outcomes of such an experiment is called permutation, and

the number of permutations of n distinct outcomes taken k at a time without

replacement is given by
nPk = n!

(n − k)!

Further

If event A can occur in m ways, event B can occur in n ways, event C

can occur in r ways, The ABC can occur in m × n × r ways.

Examples: If you have 5 Shalwar Kameez, 3 waist coats, 3 hats; How many

combinations of dress possible?

5 × 4 × 3

Examples: repetition of events, possible sequence of outcomes by rolling a

dice

- 1 times 61

- 2 times 62

· · · · · ·

- r times 6r

How many number plates can be made with 3 letters and 3 digits

26 × 26 × 26 × 10 × 10 × 10

How many number plates begin with ABC

1 × 1 × 1 × 10 × 10 × 10

If a plate is chosen at random the probability that it starts with ABC 103

263 × 103

How many ways 6 people can be arranged in a row.

6 × 5 × 4 × 3 × 2 × 1 = 6!



How many arrangement are possible if only 3 are chosen.

6 × 5 × 4

Distinctly ordered sets are called permutation. The number of permutation of

n objects taken r at a time
How many ways a team of 4 ppl How many ways in team of 4 ppl

can be arranged to take picture Captain and Vice Captain be chosen

4 × 3 × 2 × 1 4 × 3
4P4

4P2

In how many ways can 5 seniors and 4 juniors be arranged on a bench?

Seniors&Juniors Juniors&Seniors

5! × 4! + 4! × 5!

2 × 5P5
4P4

Two guys want to sit together 2 × 8! or 2 · 8P8

Arrangement with Repetition

If we have n-element of which x are first type

y are second type

z are third type

Then the number of ordered selection or permutation is given by

n!
x!y!z!

How many different arrangements of word PARRAMATTA are possible

10 letters 4A’s 2R’s 2 T’s
10!

4!2!2! = 37800

How many arrangement of letter of word REMAND are possible

• No Restriction 6P6 = 720 or 6!

• Begins with RE R E _ _ _ _ = 4P4 = 24

• Not begins with RE Total - (Previous part)= 6! - 4! = 696



Arrangement with restrictions

• From digital 2,3,4,5,6; How many numbers can be greater than 4000 5P5.

• 4 digits (start with digit ≥4)=3P1 × 4P3

5P5 + 3P1 × 4P3

• How many 4 digit numbers would be even? Even (ends with 2,4, or

6)= _ _ _3P1

=4P3 × 3P1

2. (Combination) Consider an experiment in which k outcomes are sampled with-

out replacement from the pool of n distinct outcomes k ≤ n. An unordered

arrangement of k outcomes of such an experiment is called a combination,

and the number of combinations of n outcomes taken k at a time without

replacement is given by

nCk =
(

n

k

)
= n!

k!(n − k)! =
nCk

k!

How many ways can a basketball team of 5 players be chosen from 8 players
8C5.

A committee of 5 ppl is to be chosen from group of 6 men and 4 women.

• there are no restriction 10C5

• one particular person must be chosen one committee 1 × 9C4

• one particular women must be excluded from committee 9C5

A committee of 5 ppl is to be chosen from group of 6 men and 4 women, how

many committees are possible

• there are 3 men and 2 women 6C3 × 4C2

• there are men only 6C5

• there is majority of women i.e. 3W+2M or 4W+1M 6C2 ×4C3 +6C1 ×4C4



3. (Partition) Consider an experiment in which the total of n distinct outcomes

will be partitioned into k distinct events (i.e. sampling without replacement)

containing n1, · · · , nk outcomes, respectively, where ni ≥ 0 for i = 1, 2, · · · , k

and ∑k
i=1 ni. The total number of partitions of n distinct outcomes into k

distinct events given by(
n

n1

)(
n − n1

n2

)(
n − n1

n2

)(
n − n1 − n2

n3

)
· · ·

(
n − n1 − n2 · · · nk−1

nk

)

which equals to

n!
n1!(n − n1)!

· (n − n1)!
n2!(n − n1 − n2)!

· · · (n − n1 · · · − nk−1)!
nk!(n − n1 · · · − nk−1 − nk)!(

n

n1, · · · , nk

)
= n!

n1! · · · nk!

For combinations, it is important to note that the number of ways of selecting

k outcomes from n distinct outcomes is the same as the number of ways of

avoiding n−k outcomes. That is Cn,k = Cn,n−k ·Cn,k is also called binomial co-

efficients are the number of partitions is called multinomial coefficient because

of the following theorems

Examples

1.By the permutation of the letters abc we mean all of their possible arrangement

abc, acb, bac, bca, cab, cba

There are 6 permutations of different things. As the number of things increases,

their permutation grows astronomically.

2. Imagine putting the letters a, b, c, d into a hat, and then drawing two of them in

succession. We can draw the first in 4 different ways, either a or b or c or d. After

that has happened, there are 3 ways to choose the second, three ways to choose the

third and 1 way to choose the last letter. Therefore the number of permutations is

4 · 3 · 2 · 1 = 24

Permutation is commonly represented as nPk means permutation of n different things

taken k at a time.



3. The number of combinations of two out of the four letters A,B,C and D is found

by letting n = 4 and k = 2. It is (
4
2

)
= 4!

2!2! = 6

4. In counting permutations we consider abc as different from bca. But in combina-

tions we are concerned only that a,b and c have been selected. abc and bca are the

same combination. All the combinations of abcd taken three at a time are represent

as follows:

abc, abd, acd, bcd

Number of combinations and permutations are related to each other via following

expression
nCk =

nPk

k!
Theorem(Sampling with Replacement)

1. (Permutation) Consider an experiment in which k outcomes are sampled with

replacement from the pool of n distinct outcomes. The number of permuta-

tions of n outcomes takes k at a time with replacement is given by nk

2. (Combination) consider an experiment in which k outcomes are sampled with

replacement from the pool of n distinct outcomes. The total number of com-

binations of n outcomes k at a time with replacement is given by(
n + k − 1

k

)
= (n + k − 1)!

k!(n − 1)!

Theorem(Binomial and Multinomial Theorems)

1. (Binomial) For any real number x and y and a non-negative integer n

(x + y)n =
n∑

i=0

(
n

i

)
xiyn−i

2. (Multinomial) let k and n be positive integers and A be a set of vectors a =

(n1, n2 · · · , nk) such that each ni is a non-negative integer and ∑k
i=1 ni = n.

Then, for any real number x1, x2, · · · , xk

(x1 + x2 + · · · + xk)n =
n∑

a∈A

(
n

n1n2 · · · nk

)
xn1

1 xn2
2 · · · xnk

k



2.9 Some Discrete Random Variables

In this section we describe random variables each depending on one or more param-

eters. We describe their pmf , mean and variance.

Let X be a random variable taking values a1, a2, · · · , an. We assume that these are

arranged in the ascending order a1 < a2 < · · · < an. The commutative distributions

function or cdf of X is given by

FX(ai) = P (X ≤ ai)

we see that it can be expressed in terms of the pmf of X as follows:

Fx(ai) = P (X = a1) + · · · + P (X = ai) =
i∑

j=1
P (X = aj)

In the other direction, we can recover the pmf from the cdf

P (X = ai) = Fx(ai) − Fx(ai−i)

We won’t use the cdf of a discrete random variable except for looking up the tables.It

is much more important for continuous random variables

x

f(x)

p q

x

F (x)

p q

Bernoulli random variable Bernoulli(P)

A Bernoulli random variable is the simplest type of all. It takes two values 0 and 1.



The Probability mass function looks like

px(k) = P (X = k) = pk(1 − p)1−k k = 0, 1

where 0 ≤ p ≤ 1, the pmf in table form is given below

x 0 1

P (X = x) p q

Here,P is the probability that X = 1, it can be any number between 0 and 1.

Necessarily q (the probability that X = 0) is equal to 1 − p. So p determines

everything.

For Bernoulli random variable X, we sometimes describe the experiment as a ‘trial’,

the event X = 1 as ‘success’, and the even X = 0 as a ‘failure’.

For example, if a biased coin has probability p of coming down heads, then the

number of heads that we get when we toss the coin once is Bernoulli(p) random

variable.

The cumulative distribution function is given as follows

FX(x) =



0 if x < 0;

1 − p if 0 ≤ x ≤ 1

1 ifx ≥ 1

The random variable IA is called the indicator variables of A, because its value

indicates whether or not A occurred. It is Bernoulli(P) random variable, where

p = P (A).

Calculation of the expected value and variance of a Bernoulli random variable is

easy. Let X ∼Bernoulli(p) i.e. X has the same pmf as Bernoulli(p).

E(X) = 0 · q + 1 · p = p

V ar(X) = 02 · q + 12 · p − p2 = p − p2 = pq

(Remember that q = 1 − p)



Binomial Random variable Bin(n,p)

Remember that for Bernoulli random variable, we describe the even X = 1 as a

‘success’. Now a Binomial random variable counts the number of successes in

independent trials each associated with Bernoulli(p) random variable.
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For example, suppose that we have a biased coin for which the probability of heads

is p. We toss the coin n times and count the number of heads obtained. This number

is a Bin(n,p) random variable.

A Bin(n,p) random variable X takes the values 0, 1, 2, · · · , n and the pmf of X is

given by

P (X = k) = nCk qn−kpk



For k = 0, 1, 2, · · · , n, where q = 1 − p. nCk is known as the binomial coefficient.

This is because there are nCk different ways of obtaining k heads in a sequence of n

throws (the number of choices of the positions in which the heads occur), and the

probability of getting k heads and n − k tails in a particular order is qn−kpk.

The corresponding cdf of X is

FX(x) =
∑
k=0

nnCkpkqn−k n ≤ x < n + 1

The table of probabilities for outcome of heads and tails from four Bernoulli’s trials

i.e. Bin(4,p)

k 0 1 2 3 4

P (X = k) q4 4q3p 6p2q2 4qp3 p4

Note: When we add all the probabilities in the table we get
n∑

k=0

nCkqn−kpk = (q + p)n = 1

As it should be by the definition of binomial theorem

(x + y)n =
n∑

k=0

nCkxn−kyk



This argument explains the name of the binomial random variable

If X Bin(n,p), then

E(X) = np, V ar(X) = npq

Proof:

Let us consider a random variable X Bin(n,p). We have

pk = P (X = k) = nCkqn−kpk

So the probability generating function is
n∑

k=0

nCkqn−kpk = (q + px)n

By the Binomial Theorem,Putting x = 1 gives (q + p)n = 1, Differentiating once,

using the Chain Rule, we get np(q + px)n−1. Putting x = 1 we find that

E(X) = np

Differentiating again we get n(n − 1)p2(q + px)n−2. Putting x = 1 gives n(n − 1)p2.

Not adding E(X2) − E(X)2,we get

V ar(X) = n(n − 1)p2 + np − n2p2 = np − np2 = npq

Example: Grade of Service: An internet service provider has installed c modems

to serve a population of n costumers. It is estimated that at any given time, each

customer will need a connection with probability of p, independently with others.

What is the probability that there are more customers needing a connection than

there are modems?

We are interested in the probability that more than c customer simultaneously

need a connection. It is equal to
n∑

k=c+1
p(k)

where

p(k) =
(

n

k

)
pk(1 − p)n−k



are the binomial probabilities. For instance, if n = 100, p = 0.1 and c = 15, the

desired probability turns out to be 0.0399.

Poisson Random Variable Poisson(λ)

The Poisson random variable,unlike the ones we have seen before, is very closely

connected with continuous things.

Suppose that incidents occur at random times, but at a steady rate overall. The

best example is radioactive decay: atomic nuclie decay randomly, but the average

number λ which will decay in a given interval is constant. The Poisson random

variable X counts the number of ‘incidents’ which occur in a given random interval.

So if, on average, there are 2.4 nuclear decays per second, then the number of decays

in one second starting now is Poisson(2.4) random variable.

Another example might be the number of telephone calls a minute to a busy tele-

phone number.

P (X = k) = λk

k! e−λ k = 0, 1, · · ·

Lets check that all these possibilities add up to one. We get( ∞∑
k=0

λk

k! e−λ

)
= eλ · e−λ = 1

The corresponding cdf of X is

FX(x) = P (X = k) = e−λ
n∑

k=0

λk

k! n ≤ x < n + 1
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Since the expression in the bracket is sum of exponential series.

Drawing analogies with Binomial random variable. The Expected value and variance

of a Poisson(λ) random variable are given by

E(X) = V ar(X) = λ

If X ∼ Poisson(λ), then

GX(x) =
∞∑

′k=0

(λx)k

k! e−λ = eλ(x−1)

Differentiation gives λeλ(x−1),so E(X) = λ. Differentiating again gives λ2eλ(x−1),so

V ar(X) = λ2 + λ − λ2

An other example of Poisson distribution is that if a fisher catches fishes at the

average rate of 2.4 fishes an hour, then the probability that fisher can catch no fish

at all in the next hour is 0.0907, while the probability that he catches five fishes or

fewer fishes is 0.9643, so the probability of catching six or more fishes is 0.0357.

Another situation where Poisson distribution arises. Suppose that we are looking

for a very rare event which only occurs once in a 1000 trials on average. So we con-

duct 1000 independent trials. How many occurrences of the event do we see? This

number is really a Binomial random variable Bin(1000, 1/1000). But it turns out

to be Poisson(1),to be a very good approximation. So, for example the probability

that the event doesn’t occur is about 1/e.

The general rule is:

If n is large, p is small, and np = λ, then Bin(n, p) can be approximated by

Poisson(λ)

2.10 Continuous Random Variables

Continuous random variable is a set or real numbers, or perhaps the non-negative

real numbers or just an interval. The crucial property is that , any real number a,

we have (X = a) = 0 that is, the probability that the height of a random student



or the time I have to wait for a bus, is precisely a, is zero. So we can’t use the

probability mass function for continuous random variables;it would be zero and give

no information.

We use the cumulative distribution function, as discussed before

FX(x) = P (X ≤ x)

Proposition:The c.d.f is an increasing function(this means FX(x) ≤ FX(y) if x <

y),and approaches the limits 0 a x → −∞ and 1 as x → ∞ The function is increasing

because,if x < y,then

FX(y) − FX(x) = P (X ≤ y) − P (X ≤ x) = P (x < X ≤ y) ≥ 0

Also FX(∞) = 1 because X must certainly take some finite value; and FX(−∞) = 0

because no value is smaller than −∞

Another important function is the probability density function FX . It is obtained

by differentiating the c.d.f.:

fX(x) = d

dx
FX(x)

Now FX(x) is a non-negative, since it is the derivative of an increasing function. If

we know fX(x), then FX is obtained by integrating. Because FX(−∞) = 0, we have

fX(x) =
∫ x

−∞
fX(t)dt

Note the use of dummy variable” t in this integral. Note also that

P (a ≤ X ≤ b) = FX(b) − FX(a) =
∫ b

a
fX(t)dt

The pmf is the probability that the value of X lies in a very small interval from x

to x + h is approximately fX(x) · h. So, although the probability of getting exactly

the value x is zero, the probability of being close to x is proportional to fX(x).

There is mechanical analogy which simply illustrates the scenario. We have modeled

the discrete random variable X by placing at each value a of X a mass equal to

P (X = a). Then the total mass is one, and the expected value of X is the center

of mass. For a continuous random variable, imagine we have a wire of variable

thickness, so that the density of the wire (mass per unit length) at the point x is



equal to fX(x). Then again the total mass is one: the mass to the left of x is FX(x);

and again it will hold that the center of mass is at E(X).

Most facts about continuous random variables are obtained by replacing the pmf by

the pdf and replacing sums by integrals. Thus expected value of X is given by

E(X) =
∫ +∞

−∞
xfX(x)dx

and the variance (as before)

V ar(X) = E(X2) − E(X)2

where

E(X2) =
∫ ∞

−∞
x2fX(x)dx

It is also true that V ar(X) = E((X − µ)2),where µ = E(X).

fX(x) =


2x if 0 ≤ x ≤ 1

0 otherwise.

The support of X is the interval [0, 1]. We check the integral
∫ ∞

−∞
fX(x)dx =

∫ 1

0
2xdx = [x2]x=1

x=0 = 1

The cumulative distribution function of X is

FX(x) =
∫ x

−∞
fX(t)dt =



0 if x < 0

x2 if 0 ≤ x ≤ 1

1 if x > 1

We have

E(X) =
∫ ∞

−∞
xfX(x)dx =

∫ 1

0
2x2dx = 2

3

E(X) =
∫ ∞

−∞
x2fX(x)dx =

∫ 1

0
2x3dx = 1

2

V ar(X) = 1
2 −

(2
3

)2
= 1

18



2.11 Some Continuous Random Variables

In this section we examine three important continuous random variables: the uni-

form, exponential and normal.

Uniform random variable U(a,b)

Let a and b be real numbers with a < b. A uniform random variable on the interval

[a, b] is roughly speaking,“equally likely to anywhere in the interval”. In other words,

it probability density is function is constant on the interval [a, b] (and zero outside

the interval). The integral of the p.d.f. is the area of a rectangle of height c and

base b − a: this area must be 1, so c = 1/(b − a). This, the p.d.f. of the random

variable X ∼ U(a, b) is given by

fX(x) =


1/(b − a) if a ≤ x ≤ b,

0 otherwise.

By integration, we find that the c.d.f. is

FX(x) =



0 if x < a,

(x − a)/(b − a) if a ≤ x ≤ b,

1 x > b.

Further calculation (or symmetry of the p.d.f.) show that the expected value

and the median of X are both given by (a + b)/2 (the midpoint interval), while

V ar(x) = (b − a)2/12.

The uniform random variable really doesn’t arise in practicle situations. Most com-

puter systems include a random number generator, which apparently produces in-

dependent values of a uniform random variable on the interval [0, 1].Of course, they

are not really random, since the computer is a deterministic machine; but there

should be no obvious pattern to the numbers produced, and in a large number of

trials they should be distributed uniformly over the interval.
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Exponential random variable Exp(λ)

The exponential random variable arises in the same situation as the Poisson: be

careful not to confuse them. We have events which occur randomly but at a constant

average rate of λ per unit time. (e.g radioactive decays, fish catch). The Poisson

random variable, which is discrete, counts how many events will occur in the next

time unit. The exponential random variable, which is continuous measures exactly

how long from now it is until next event occurs. Not that it takes non-negative real

numbers are values.

If X ∼ Exp(λ), the pdf of X is

fX(x) =


0 if x < 0,

λe−λx if x ≥ 0

By integration, we find c.d.f. to be

FX(x) =


0 if x < 0,

1 − λe−λx if x ≥ 0

Further calculations yield

E(X) = 1/λ, V ar(X) = 1/λ2

Normal random variable N(µ, σ2)

The normal random variable is the common-most of all applications, and the most



important. It is also popularly known as Gaussian Distribution, If you take sum (or

the average) of n independent random variables with the same distribution as X,

the result will be approximately normal, and will become more and more like normal

variable as n grows. This partly explains why a random variable affected by many

independent factors, like a man’s height, has an approximately normal distribution.

2.12 Normal Distribution

Also known as the Gaussian distribution, a well-known and widely applicable ran-

dom variable distribution.The probability density function is defined as

PX(x) = 1√
2πσ2

e− 1
2 ( (x−µ)

σ
)2

where µ is the mean and σ2 is the variance of the distribution. The distribution is

typically specified as norm(µ,σ2). The plot of the gaussian distribution is illustrated

below
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For the Gaussian rv the probability can be easily calculated using the expression

z = x − µ

σ
, where z is the scaled parameter which assumes value as provided in the

table below:

Few exercises have been considered in the class lectures.



0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09

0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9761 0.9767

2 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.9990 0.9990



Chapter 3
Joint Probability Functions

3.1 Joint Pmf of two random variables

Let X be a random variable taking a1, · · · , an and let Y be random variable take the

value b1, · · · , bm. We say that X and Y are independent if for any possible values i

and j, we have

P (X = ai, Y = bj) = P (X = ai) · P (Y = bj)

Here P (X = ai, Y = bj) means the probability of the event take the value ai and Y

takes the value bj. So we could re-state the definition as follows:

The random variables X and Y are independent if, for any value ai of X and for

any value bj of Y ,the events X = ai and Y = bj are independent (events)

some examples should be inserted for clearing up the concept of independent events and independent variables

Theorm X and Y be random variables

(a) E(X + Y ) = E(X) + E(Y ).

(b) If X and Y are independent, then V ar(X + Y ) = V ar(X) + V ar(Y ).

I have two red pens,one green pen and one blue pen, I choose two pens without

replacement.Let X be the number of red pens that I choose and Y the number of

green pends. Then the pmf of X and Y is given in the following table
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0 1

0 0 1
6

1 1
3

1
3

2 1
6 0

The row and column sums give us pmf for X and Y

a 0 1 2

P (X = a) 1
6

2
3

1
6

b 0 1

P (Y = b) 1
2

1
2

Consider the joint pmf of X and Y . The random variable X + Y takes the values

ai + bj for i = 1 · · · , n and j = 1 · · · , m. Now the probability that it takes a give

value ck is the sum of probabilities P (X = ai, Y = bj) over all i and j such that

ai + bj = ck. Thus

E(X + Y ) =
∑

k

ckP (X + Y = ck)

=
n∑

i=1

m∑
j=1

P (X = ai, Y = bj)

=
 n∑

i=1
ai

m∑
j=1

P (X = ai, Y = bj)
+

 m∑
j=1

bj

n∑
i=1

P (X = ai, Y = bj)


now ∑m
j=1 P (X = ai, Y = bj) is a row sum of the joint pmf table so is equal to

P (X = ai) and similarly ∑n
i=1 P (X = ai, Y = bj) is a column sum and is equal to

P (Y = bj). So

E(X + Y ) =
n∑

i=1
aiP (X = ai) +

m∑
j=1

bjP (Y = bj)

= E(X) + E(Y )

The variance is bit trickier. We start by calculating

E((X + Y )2) = E(X2 + 2XY + Y 2) = E(X2) + 2E(XY ) + E(Y 2)

Now we have to consider the term E(XY ). For this we have to make the assumption

that X and Y are independent, that is

P (X = ai, Y = bj) = P (X = ai) · P (Y = bj)



we have

E(XY ) =
n∑

i=1

m∑
j=1

aibjP (X = ai, Y = bj)

=
n∑

i=1

m∑
j=1

aibjP (X = ai)P (Y = bj)

=
(

n∑
i=1

aiP (X = ai)
)

·

 m∑
j=1

bjP (Y = bj)


= E(X) · E(Y )

So

V ar(X + Y ) = E((X + Y )2) − (E(X + Y ))2

= (E(X2) + 2E(XY ) + E(Y 2)) − (E(X)2 + 2E(X)E(Y ) + E(Y )2)

= V ar(X) + V ar(Y )


